Heavy metal pollution is a global health issue affecting people worldwide, and the exploration of sensitive biomarkers to assess the toxicity of heavy metals is an important work for researchers. Cathepsin L, role as a tissue-specific biomarker to assess the biological effects of environmental pollutants, has not received much attention. In this work, the full-length cDNA of cathepsin L gene from the planarian Dugesia japonica (designated DjCatL) was cloned by rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of DjCatL is 1161 bp, which encodes a protein of 346 amino acids with a molecular weight of 39.03 kDa. Sequence analysis revealed that DjCatL contains highly conserved ERF/WNIN, GNFD, and GCXGG motifs, which are the features of the cathepsin L protein family. Whole-mount in situ hybridization (WISH) results revealed that the transcripts of DjCatL are specifically distributed in the intestinal system, suggesting that this gene is related to food digestion in planarians. Both quantitative polymerase chain reaction (qPCR) and WISH results revealed that the transcriptional levels of DjCatL are inhibited significantly by heavy metal (Cd, Hg, and Cu) exposure in a dose-dependent manner. Therefore, we proposed that cathepsin L can be used as a tissue-specific biomarker to assess the heavy metal pollution in the aquatic environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.04.079DOI Listing

Publication Analysis

Top Keywords

heavy metal
16
tissue-specific biomarker
12
gene planarian
8
planarian dugesia
8
dugesia japonica
8
metal exposure
8
metal pollution
8
biomarker assess
8
cathepsin
5
heavy
5

Similar Publications

Quantification of heavy metal exposure in a British population cohort links total mercury levels in plasma with skin tissue-specific changes in mitochondrial-related gene expression.

Sci Total Environ

January 2025

Department of Twin Research and Genetic Epidemiology, King's College London, 3-4th Floor South Wing Block D, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK. Electronic address:

Heavy metals in our direct environment have profound effects on human health and while some are essential for life, others can be toxic. In vivo studies often focus on clinical features caused by overexposure to, or by deprivation of a heavy metal. However, to understand the cellular impact of heavy metals on health, studies in healthy volunteers before symptom onset are needed.

View Article and Find Full Text PDF

Ultrabright aggregation-induced materials for the highly sensitive detection of Ag and T-2 toxin.

Food Chem

January 2025

State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:

Heavy metals and mycotoxins are important contaminants in food pollution. Sensitive, reliable, and rapid detection of heavy metals and mycotoxins is crucial for human health. In this work, imidazole-functionalized aggregation-induced emission (AIE) molecule tetra-(4-pyridylphenyl) ethylene (TPPE) was used as a precise and specific probe for Ag detection, with a limit of detection (LOD) of 0.

View Article and Find Full Text PDF

Cadmium (Cd) is a silvery-white and shiny heavy metal that is common in daily life and can adversely affect the development, lifespan, and reproduction of organisms. In this study, Drosophila melanogaster (F) were cultured from eggs to adults in medium containing different Cd concentrations (0, 2.25, and 4.

View Article and Find Full Text PDF

Understanding pollutant-driven shifts of antibiotic resistome in activated sludge: A lab-scale study.

J Hazard Mater

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:

Non-antibiotic pollutants have been identified as contributors to the development of antibiotic resistance across various environments. Wastewater treatment plants, recognized as hotspots for antibiotic resistance genes (ARGs), have received extensive attention regarding the mechanisms driving resistance changes in activated sludge. However, the specific impacts of heavy metals and aromatic organics-common pollutants in industrial wastewater-on the resistome of activated sludge, as well as the underlying mechanisms driving these effects, remain underexplored.

View Article and Find Full Text PDF

Molecular-level insights of microplastic-derived soluble organic matter and heavy metal interactions in different environmental occurrences through EEM-PARAFAC and FT-ICR MS.

J Hazard Mater

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China. Electronic address:

The interactions between microplastic-derived dissolved organic matter (MPs-DOM) and heavy metals (Cu, Pb, and Cd) regulate the complex environmental transport behavior of pollutants in terrestrial and aquatic environments. In this study, fluorescence excited emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) and electrospray ionization coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) were employed to investigate the complexation mechanism of MPs-DOM with heavy metals, as well as the effects of different environmental occurrences of MPs-DOM on the transport behaviors of heavy metals in saturated porous medium. The findings demonstrated that MPs-DOM, particularly humic-like substances containing aromatic structures and various oxygen functional groups, could form stable complexes with heavy metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!