Ionic liquid (IL) surfactants have attracted great interest as promising substitutes for conventional surfactants owing to their exceptional and favorable physico-chemical properties. However, most IL surfactants are not eco-friendly and form unstable micelles, even when using a high concentration of the surfactant. In this study, we prepared a series of halogen-free and biocompatible choline-fatty-acid-based ILs with different chain lengths and degrees of saturation, and we then investigated their micellar properties in aqueous solutions. Characterization of the synthesized surface-active ILs (SAILs) was performed by H and C nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and elemental analysis. The surface-active properties of the SAILs were investigated by tensiometry, conductometry, and dynamic light scattering measurements. The critical micelle concentration of the SAILs was found to be 2-4 times lower than those of conventional surfactants. The thermodynamic properties of micellization (ΔG, ΔH, and ΔS) indicate that the micellization process of the SAILs is spontaneous, stable, and entropy-driven at room temperature. The cytotoxicity of the SAILs was evaluated using mammalian cell line NIH 3T3. Importantly, [Cho][Ole] shows lower toxicity than the analogous ILs with conventional surfactants. These results clearly suggest that these environmentally friendly SAILs can be used as a potential alternative to conventional ILs for various purposes, including biological applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2019.04.095 | DOI Listing |
Pharmaceutics
December 2024
Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India.
Liposome-based drug delivery technologies have showed potential in enhancing medication safety and efficacy. Innovative drug loading and release mechanisms highlighted in this review of next-generation liposomal formulations. Due to poor drug release kinetics and loading capacity, conventional liposomes have limited clinical use.
View Article and Find Full Text PDFMolecules
January 2025
Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRAE, 4 allée Emile Monso, 31030 Toulouse, France.
In organic synthesis, the solvent is the chemical compound that represents the largest proportion of the process. However, conventional solvents are often toxic and dangerous for the environment, and an interesting alternative is to replace them by water. In this context, catalyst surfactants allow both organic reagents in water to be solubilized and organic reactions to be catalyzed.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Nanomedicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia.
The emergence of multidrug-resistant bacteria presents a significant global health threat. Liposomal antibiotics have shown a potential to improve antibiotic delivery and efficacy. This study aimed to develop liposomes encapsulating tobramycin (TOB) and methylglyoxal (MGO) to enhance TOB activity while reducing bacterial adhesion and biofilm formation.
View Article and Find Full Text PDFContemp Clin Dent
December 2024
Department of Pediatric and Preventive Dentistry, K.M. Shah Dental College and Hospital, Sumandeep Vidyapeeth (Deemed to be University), Vadodara, Gujarat, India.
Background: Preventive dental procedures are cornerstones of caries management.
Introduction: This research aims to analyze the clinical effectiveness of pit and fissure sealants when applied to etched enamel pretreated with solvents compared to the conventional etch and seal technique.
Subjects And Methods: Children and adolescents with clinically healthy occlusal surfaces or noncavitated occlusal carious lesions on permanent first and/or second molars in all four quadrants were randomly allocated into four groups.
Sci Rep
January 2025
Depto de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31.270-901, Brazil.
Magnetoliposomes containing magnetite, soy lecithin, stigmasterol, and beta-sitosterol of the mean size minor than 160 nm were obtained by a scalable and green process using autoclave and sonication without organic solvents. The formation, size of the liposome, linkage, and encapsulation of the magnetite were evaluated by Cryo-TEM. The stability of magnetoliposomes after storage for 6 months at 4 °C was improved by liposome size, the ability of soy lecithin to preserve the magnetite phase against oxidation, pH, polydispersity index, and zeta potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!