Predictive models for neural or fMRI data are often fit using regression methods that employ priors on the model parameters. One widely used method is ridge regression, which employs a spherical multivariate normal prior that assumes equal and independent variance for all parameters. However, a spherical prior is not always optimal or appropriate. There are many cases where expert knowledge or hypotheses about the structure of the model parameters could be used to construct a better prior. In these cases, non-spherical multivariate normal priors can be employed using a generalized form of ridge known as Tikhonov regression. Yet Tikhonov regression is only rarely used in neuroscience. In this paper we discuss the theoretical basis for Tikhonov regression, demonstrate a computationally efficient method for its application, and show several examples of how Tikhonov regression can improve predictive models for fMRI data. We also show that many earlier studies have implicitly used Tikhonov regression by linearly transforming the regressors before performing ridge regression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2019.04.012 | DOI Listing |
PLoS Comput Biol
November 2024
Department of Physics, Washington University in St. Louis, St. Louis, Missouri, United States of America.
Microbial communities play key roles across diverse environments. Predicting their function and dynamics is a key goal of microbial ecology, but detailed microscopic descriptions of these systems can be prohibitively complex. One approach to deal with this complexity is to resort to coarser representations.
View Article and Find Full Text PDFHeliyon
September 2024
ENET Centre, VSB-Technical University of Ostrava, 708 00, Ostrava, Czech Republic.
The transformation of traditional grid networks towards smart-grid and microgrid concepts raises many critical issues, and quality in the power supply is one of the prominent ones that needs further research. Developing and applying power quality (PQ) recognition methods with efficient and reliable analysis are essential to the fast-growing issues related to modern smart power distribution systems. In this regard, a hybrid algorithm is proposed for PQ events detection and classification using Elasticnet Regression-based Variational Mode Decomposition (ER-VMD) and Salp Swarm Algorithm optimized Probabilistic Neural Network (SSA-PNN).
View Article and Find Full Text PDFChaos
August 2024
Ambrosys GmbH, 14482 Potsdam, Germany.
This study presents a Bayesian maximum a posteriori (MAP) framework for dynamical system identification from time-series data. This is shown to be equivalent to a generalized Tikhonov regularization, providing a rational justification for the choice of the residual and regularization terms, respectively, from the negative logarithms of the likelihood and prior distributions. In addition to the estimation of model coefficients, the Bayesian interpretation gives access to the full apparatus for Bayesian inference, including the ranking of models, the quantification of model uncertainties, and the estimation of unknown (nuisance) hyperparameters.
View Article and Find Full Text PDFSci Rep
February 2024
College of Weapons, Naval University of Engineering, Wuhan, 430033, Hubei, China.
In order to simultaneously maintain the ship magnetic field modeling accuracy, reduce the number of coefficient matrix conditions and the model computational complexity, an improved composite model is designed by introducing the magnetic dipole array model with a single-axis magnetic moment on the basis of the hybrid ellipsoid and magnetic dipole array model. First, the improved composite model of the ship's magnetic field is established based on the magnetic dipole array model with 3-axis magnetic moment, the magnetic dipole array model with only x-axis magnetic moment, and the ellipsoid model. Secondly, the set of equations for calculating the magnetic moments of the composite model is established, and for the problem of solving the pathological set of equations, the least-squares estimation, stepwise regression method, Tikhonov, and truncated singular value decomposition regularization methods are introduced in terms of the magnetic field, and generalized cross-validation is used to solve the optimal regularization parameters.
View Article and Find Full Text PDFAdv Mater
June 2023
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi, 830011, China.
The development of a data-driven science paradigm is greatly revolutionizing the process of materials discovery. Particularly, exploring novel nonlinear optical (NLO) materials with the birefringent phase-matching ability to deep-ultraviolet (UV) region is of vital significance for the field of laser technologies. Herein, a target-driven materials design framework combining high-throughput calculations (HTC), crystal structure prediction, and interpretable machine learning (ML) is proposed to accelerate the discovery of deep-UV NLO materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!