The cornea is the most sensitive structure in the human body. Corneal nerves adapt to maintain transparency and contribute to corneal health by mediating tear secretion and protective reflexes and provide trophic support to epithelial and stromal cells. The nerves destined for the cornea travel from the trigeminal ganglion in a complex and coordinated manner to terminate between and within corneal epithelial cells with which they are intricately integrated in a relationship of mutual support involving neurotrophins and neuromediators. The nerve terminals/receptors carry sensory impulses generated by mechanical, pain, cold and chemical stimuli. Modern imaging modalities have revealed a range of structural abnormalities such as attrition of nerves in neurotrophic keratopathy and post-penetrating keratoplasty; hyper-regeneration in keratoconus; decrease of sub-basal plexus with increased stromal nerves in bullous keratopathy and changes such as thickening, tortuosity, coiling and looping in a host of conditions including post corneal surgery. Functionally, symptoms of hyperaesthesia, pain, hypoaesthesia and anaesthesia dominate. Morphology and function do not always correlate. Symptoms can dominate in the absence of any visible nerve pathology and vice-versa. Sensory and trophic functions too can be dissociated with pre-ganglionic lesions causing sensory loss despite preservation of the sub-basal nerve plexus and minimal neurotrophic keratopathy. Structural and/or functional nerve anomalies can be induced by corneal pathology and conversely, nerve pathology can drive inflammation and corneal pathology. Improvements in accuracy of assessing sensory function and imaging nerves in vivo will reveal more information on the cause and effect relationship between corneal nerves and corneal diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.preteyeres.2019.05.003 | DOI Listing |
Biomed Opt Express
January 2025
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
Abnormal corneal nerve function and associated disease is a significant public health concern. It is associated with prevalent ocular surface diseases, including dry eye disease. Corneal nerve dysfunction is also a common side effect of refractive surgeries, as well as a symptom of diseases that cause peripheral neuropathies.
View Article and Find Full Text PDFSurv Ophthalmol
January 2025
Michigan Medicine, Department of Ophthalmology and Visual Sciences, Ann Arbor, MI, USA.
Chronic ocular surface pain (COSP) refers to interrelated symptoms such as eye burning, aching, and irritation and can occur as an isolated condition or comorbid with numerous ocular disorders, including dry eye syndrome Treatments for COSP are largely aimed at the ocular surface and modulating pain arising from damaged corneal nerves; however, the average impact of these treatments on COSP are low to absent. A potential explanation for this is that in a subset of patients with COSP, individuals have amplified and/or dysregulated neural signaling and sensory processing within the central nervous system (CNS). As in other chronic pain conditions, this might be the pathogenic mechanism primarily responsible for maintaining pain - a phenomenon now referred to as nociplastic pain.
View Article and Find Full Text PDFInt J Surg Case Rep
January 2025
Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia; King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia; Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia. Electronic address:
Introduction: Retinal capillary hemangioma (RCH) is a benign vascular hamartoma that can occur sporadically or as a manifestation of Von Hippel-Lindau (VHL) disease. If left untreated, it results in adverse ocular complications depending on its location and eventual visual loss.
Case Presentation: We present a 50-year-old man who was a known case of VHL with history of left eye vision loss in the left eye at the age of 30 years.
Cornea
January 2025
Department of Ophthalmology, University of Cyprus Medical School, Nicosia, Cyprus.
Purpose: To assess the impact of autologous serum (AS) tears at a 50% concentration on the ocular surface of patients with refractory dry eye disease (DED) because of Sjogren syndrome.
Methods: Twenty eyes of ten patients with severe immune-mediated DED were contralaterally randomized to receive either AS tears 50% or artificial tears between June 2021 and May 2023. Changes in tear stability, ocular surface staining, and in the morphology of the corneal sub-basal nerves were evaluated before treatment and at 1, 2, and 3 months after treatment using objective tests for DED and confocal microscopy.
Cornea
January 2025
Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA.
Purpose: To report on optical coherence tomography angiography (OCTA) in patients with a type 1 Boston keratoprosthesis (KPro) and determine its feasibility through assessment of imaging artifacts.
Methods: KPro and non-KPro subjects were matched for age, gender, and glaucoma diagnosis. OCTA images of the peripapillary optic nerve were obtained, reviewed by 2 readers masked to the diagnosis for artifacts and usability, and used for microvascular measurements.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!