Carcinoembryonic antigen (CEA), a highly glycosylated protein, overexpresses in many cancers. In this study, computational methods were used to optimize CEA aptamers. Experimental evaluvation of selected aptamers were conducted through electrochemical impedance spectroscopy. After two and three-dimensional structure modeling, the complexes of twelve reported aptamers against CEA were simulated using the ZDOCK server. Based on docking scores, two aptamer sequences (CSR59 and CSR57.1) were selected and used to create a new library. This ssDNA aptamer library consisting of 91 sequences was created using diverse in silico mutational methods. We obtained seventeen sequences having higher binding scores than reported sequences. Based on ZDOCK scores, the interaction domain of CEA, and steric hindrance due to glycosylation, two aptamer sequences (G3S1.5 and G2S2.2) were selected. An impedimetric aptasensor was designed, and selected aptamers were used as biorecognition elements. Resistance to charge transfer (Rct) quantities confirmed the bioinformatic approach and molecular docking scores. The result showed that the interaction ability of selected aptamers was about 13.5 fold higher than the control. It can be concluded that the selected aptamers have good potential for detection of carcinoembryonic antigen biomarker.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2019.05.002DOI Listing

Publication Analysis

Top Keywords

selected aptamers
16
carcinoembryonic antigen
12
aptamers experimental
8
docking scores
8
aptamer sequences
8
aptamers
7
selected
6
sequences
5
computational analysis
4
analysis optimization
4

Similar Publications

A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Liver fibrosis, a hallmark of chronic liver diseases, is characterized by excessive extracellular matrix (ECM) deposition and scar tissue formation. Current antifibrotic nanomedicines face significant limitations, including poor penetration into fibrotic tissue, rapid clearance, and suboptimal therapeutic efficacy. The dense fibrotic ECM acts as a major physiological barrier, necessitating the development of a targeted delivery strategy to achieve effective therapeutic outcomes.

View Article and Find Full Text PDF

A Label-Free Colorimetric Aptasensor for Flavokavain B Detection.

Sensors (Basel)

January 2025

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.

Flavokavain B (FKB), a hepatotoxic chalcone from (kava), has raised safety concerns due to its role in disrupting redox homeostasis and inducing apoptosis in hepatocytes. Conventional chromatographic methods for FKB detection, while sensitive, are costly and impractical for field applications. In this work, DNA aptamers were selected using the library-immobilized method and high-throughput sequencing.

View Article and Find Full Text PDF

Preparation of CHS-FeO@@ZIF-8 peroxidase-mimic with an ultra-thin hollow layer for ultrasensitive electrochemical detection of kanamycin.

Mikrochim Acta

January 2025

Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.

A highly sensitive and selective electrochemical biosensor was developed for the detection of kanamycin using a core-hollow-shell structured peroxidase-mimic nanozyme, CHS-Fe₃O₄@@ZIF-8. The synthesized CHS-FeO@@ZIF-8 was characterized with scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was found that the CHS-FeO@@ZIF-8 exhibits excellent peroxidase-like activity due to  its ultra-thin hollow layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!