Neutron-Antineutron Oscillations from Lattice QCD.

Phys Rev Lett

Lawrence Livermore National Laboratory, Livermore, California 94550, USA.

Published: April 2019

AI Article Synopsis

Article Abstract

Fundamental symmetry tests of baryon number violation in low-energy experiments can probe beyond the standard model (BSM) explanations of the matter-antimatter asymmetry of the Universe. Neutron-antineutron oscillations are predicted to be a signature of many baryogenesis mechanisms involving low-scale baryon number violation. This Letter presents first-principles calculations of neutron-antineutron matrix elements needed to accurately connect measurements of the neutron-antineutron oscillation rate to constraints on |ΔB|=2 baryon number violation in BSM theories. Several important systematic uncertainties are controlled by using a state-of-the-art lattice gauge field ensemble with physical quark masses and approximate chiral symmetry, performing nonperturbative renormalization with perturbative matching to the modified minimal subtraction scheme, and studying excited state effects in two-state fits. Phenomenological implications are highlighted by comparing expected bounds from proposed neutron-antineutron oscillation experiments to predictions of a specific model of postsphaleron baryogenesis. Quantum chromodynamics is found to predict at least an order of magnitude more events in neutron-antineutron oscillation experiments than previous estimates based on the "MIT bag model" for fixed BSM parameters. Lattice artifacts and other systematic uncertainties that are not controlled in this pioneering calculation are not expected to significantly change this conclusion.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.122.162001DOI Listing

Publication Analysis

Top Keywords

baryon number
12
number violation
12
neutron-antineutron oscillation
12
neutron-antineutron oscillations
8
systematic uncertainties
8
uncertainties controlled
8
oscillation experiments
8
neutron-antineutron
6
oscillations lattice
4
lattice qcd
4

Similar Publications

Photonic axion insulator.

Science

January 2025

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.

Axions, hypothetical elementary particles that remain undetectable in nature, can arise as quasiparticles in three-dimensional crystals known as axion insulators. Previous implementations of axion insulators have largely been limited to two-dimensional systems, leaving their topological properties in three dimensions unexplored in experiment. Here, we realize an axion insulator in a three-dimensional photonic crystal and probe its topological properties.

View Article and Find Full Text PDF

Supervised multi-frame dual-channel denoising enables long-term single-molecule FRET under extremely low photon budget.

Nat Commun

January 2025

State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.

Camera-based single-molecule techniques have emerged as crucial tools in revolutionizing the understanding of biochemical and cellular processes due to their ability to capture dynamic processes with high precision, high-throughput capabilities, and methodological maturity. However, the stringent requirement in photon number per frame and the limited number of photons emitted by each fluorophore before photobleaching pose a challenge to achieving both high temporal resolution and long observation times. In this work, we introduce MUFFLE, a supervised deep-learning denoising method that enables single-molecule FRET with up to 10-fold reduction in photon requirement per frame.

View Article and Find Full Text PDF

Comparison of in vitro cell survival predictions using Monte Carlo methods for proton irradiation.

Phys Med

January 2025

Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago, Chile. Electronic address:

Article Synopsis
  • The study explores how combining theoretical models with Monte Carlo simulations can improve predictions of cell survival following radiation-induced DNA damage.
  • Methods were optimized for proton irradiation on the Chinese hamster V79 cell line, and discrepancies from existing survival data were analyzed using two different simulation approaches.
  • The findings highlight the importance of accurate modeling, revealing a new method that reduces prediction error significantly, while also refining a user-friendly interface for easier comparison of predictive models in future research.
View Article and Find Full Text PDF

Structural Evolution of Retinal Chromophore in Early Intermediates of Inward and Outward Proton-Pumping Rhodopsins.

J Phys Chem B

January 2025

Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.

Proton-pumping rhodopsins, which consist of seven transmembrane helices and have a retinal chromophore bound to a lysine side chain through a Schiff base linkage, offer valuable insights for developing unidirectional ion transporters. Despite identical overall structures and membrane topologies of outward and inward proton-pumping rhodopsins, these proteins transport protons in opposing directions, suggesting a rational mechanism that enables protons to move in different directions within similar protein structures. In the present study, we clarified the chromophore structures in early intermediates of inward and outward proton-pumping rhodopsins.

View Article and Find Full Text PDF

Thallium-201 is an Auger electron-emitting radionuclide with significant potential for targeted molecular radiotherapy of cancer. It stands out among other Auger electron emitters by releasing approximately 37 Auger and Coster-Kronig electrons per decay, which is one of the highest numbers in its category. It has also a convenient half-life of 73 h, a stable daughter product, established production methods, and demonstrated high radiotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!