Epidermal downgrowth around percutaneous devices produce sinus tracts, which then accumulate bacteria becoming foci of infection. This mode to failure is epidermal-centric, and is accelerated by changes in the chemokines and cytokines of the underlying periprosthetic granulation tissue (GT). In order to more fully comprehend the mechanism of downgrowth, in this 28-day study, percutaneous devices were placed in 10 Zucker diabetic fatty rats; 5 animals were induced with diabetes mellitus II (DM II) prior to the surgery and 5 animals served as a healthy, nondiabetic cohort. At necropsy, periprosthetic tissues were harvested, and underwent histological and polymerase chain reaction (PCR) studies. After isolating GTs from the surrounding tissue and extracting ribonucleic acids, PCR array and quantitative-PCR (qPCR) analyses were carried-out. The PCR array for 84 key wound-healing associated genes showed a five-fold or greater change in 31 genes in the GTs of healthy animals compared to uninjured healthy typical skin tissues. Eighteen genes were overexpressed and these included epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR). Thirteen genes were underexpressed. When GTs of DM II animals were compared to healthy animals, there were 8 genes overexpressed and 25 genes underexpressed; under expressed genes included EGF and EGFR. The qPCR and immunohistochemistry data further validated these observations. Pathway analysis of genes up-regulated 15-fold or more indicated two, EGFR and interleukin-10, centric clustering effects. It was concluded that EGFR could be a key player in exacerbating the epidermal downgrowth, and might be an effective target for preventing downgrowth.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.34409DOI Listing

Publication Analysis

Top Keywords

epidermal growth
12
growth factor
12
genes overexpressed
12
percutaneous devices
12
genes
9
factor receptor
8
epidermal downgrowth
8
pcr array
8
healthy animals
8
animals compared
8

Similar Publications

The cysteine-rich epidermal growth factor ligand domain 2 protein (CRELD2) is associated with pathways that regulate epithelial-to-mesenchymal transition, a critical process driving cancer metastasis. This study aimed to determine the prognostic value of CRELD2 status on survival outcomes in triple-negative breast cancer (TNBC). Seventy patients were included in the study.

View Article and Find Full Text PDF

In gastric cancer, the relationship between human epidermal growth factor receptor 2 (HER2), the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway, and autophagy remains unclear. This study examines whether HER2 regulates autophagy in gastric cancer cells via the cGAS-STING signaling pathway, influencing key processes such as cell proliferation and migration. Understanding this relationship could uncover new molecular targets for diagnosis and treatment.

View Article and Find Full Text PDF

Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.

View Article and Find Full Text PDF

Small molecules targeting activating mutations within the epidermal growth factor receptor (EGFR) are efficacious anticancer agents, particularly in non-small cell lung cancer (NSCLC). Among these, lazertinib, a third-generation tyrosine kinase inhibitor (TKI), has recently gained FDA approval for use in combination with amivantamab, a dual EGFR/MET-targeting monoclonal antibody. This review delves into the discovery and development of lazertinib underscoring the improvements in medicinal chemistry properties, especially in comparison with osimertinib.

View Article and Find Full Text PDF

Background: Hypertension-mediated organ damage (HMOD) is a critical complication of hypertension that can present with cardiac, retinal, and renal manifestations and affect patient outcomes. Serum signal peptide, CUB (complement C1r/C1s, Uegf, and Bmp1) domain, and epidermal growth factor-like domain-containing protein 1 (SCUBE-1), a novel biomarker implicated in vascular pathology, shows promise for detecting HMOD. This study aims to explore the relation between SCUBE-1 levels and HMOD in hypertensive patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!