While theoretical studies predicted the stability and exotic properties of plumbene, the last group-14 cousin of graphene, its realization has remained a challenging quest. Here, it is shown with compelling evidence that plumbene is epitaxially grown by segregation on a Pd Pb (111) alloy surface. In scanning tunneling microscopy (STM), it exhibits a unique surface morphology resembling the famous Weaire-Phelan bubble structure of the Olympic "WaterCube" in Beijing. The "soap bubbles" of this "Nano WaterCube" are adjustable with their average sizes (in-between 15 and 80 nm) related to the Pb concentration (x < 0.2) dependence of the lattice parameter of the Pd Pb (111) alloy surface. Angle-resolved core-level measurements demonstrate that a lead sheet overlays the Pd Pb (111) alloy. Atomic-scale STM images of this Pb sheet show a planar honeycomb structure with a unit cell ranging from 0.48 to 0.49 nm corresponding to that of the standalone 2D topological insulator plumbene.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201901017DOI Listing

Publication Analysis

Top Keywords

111 alloy
12
"nano watercube"
8
alloy surface
8
graphene's latest
4
latest cousin
4
plumbene
4
cousin plumbene
4
plumbene epitaxial
4
epitaxial growth
4
growth "nano
4

Similar Publications

We have found that surface superstructures made of "monolayer alloys" of Tl and Pb on Si(111), having giant Rashba effect, produce nonreciprocal spin-polarized photocurrent via circular photogalvanic effect (CPGE) by obliquely shining circularly polarized near-infrared (IR) light. CPGE is here caused by the injection of in-plane spin into spin-split surface-state bands, which is observed only on Tl-Pb alloy layers but not on single-element Tl nor Pb layers. In the Tl-Pb monolayer alloys, despite their monatomic thickness, the magnitude of CPGE is comparable to or even larger than the cases of many other spin-split thin-film materials.

View Article and Find Full Text PDF

Cr-MOF composited with facet-engineered bimetallic alloys for inducing photocatalytic conversion of CO to CH.

Chem Commun (Camb)

January 2025

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.

The design of efficient photocatalysts is crucial for photocatalytic CO reduction. This study developed photocatalysts based on MIL-101(Cr) composited with a facet-engineered Pt/Pd nanoalloy (PPNA). Photocatalytic performance evaluations show that MIL-101(Cr) loaded with PPNA exposing {111} facets, namely M-A(111), exhibits a CO to CH conversion rate of 9.

View Article and Find Full Text PDF

Strong, ductile, and hierarchical hetero-lamellar-structured alloys through microstructural inheritance and refinement.

Proc Natl Acad Sci U S A

January 2025

Department of Materials Science and Engineering, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, China.

The strength-ductility trade-off exists ubiquitously, especially in brittle intermetallic-containing multiple principal element alloys (MPEAs), where the intermetallic phases often induce premature failure leading to severe ductility reduction. Hierarchical heterogeneities represent a promising microstructural solution to achieve simultaneous strength-ductility enhancement. However, it remains fundamentally challenging to tailor hierarchical heterostructures using conventional methods, which often rely on costly and time-consuming processing.

View Article and Find Full Text PDF

Ta/Re layered composite material is a high-temperature material composed of the refractory metal tantalum (Ta) as the matrix and high-melting-point, high-strength rhenium (Re) as the reinforcement layer. It holds significant potential for application in aerospace engine nozzles. Developing the Ta/Re potential function is crucial for understanding the diffusion behavior at the Ta/Re interface and elucidating the high-temperature strengthening and toughening mechanism of Ta/Re layered composites.

View Article and Find Full Text PDF

Mechanism and catalytic activity of the water-gas shift reaction on a single-atom alloy Al/Cu (111) surface.

Nanoscale

January 2025

School of Chemistry, Dalian University of Technology, No.2 Linggong Road, Dalian City, Liaoning Province, 116024, P. R. China.

The mechanism and activity of the water-gas shift reaction (WGSR) on single-atom alloy Al/Cu (111) and Cu (111) surfaces were studied using GGA-PBE-D3. Al/Cu (111) exhibited bifunctional active sites, with the Al site being positively charged and the Cu site negatively charged due to electronic interactions. This led to selective adsorption of HO and CO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!