One of the greatest challenges in nanomedicine is the low efficiency with which nanoparticles are delivered to lesions such as tumors in vivo. Here, we show that Physalis mottle virus (PhMV)-like nanoparticles can be developed as bimodal contrast agents to achieve long circulation, specific targeting capability, and efficient delivery to tumors in vivo. The self-assembling coat protein nanostructure offers various opportunities to modify the internal and external surfaces separately. After loading the internal cavity of the particles with the fluorescent dye Cy5.5 and paramagnetic Gd(III) complexes, we modified the outer surface by PEGylation and conjugation with targeting peptides. Using this combined approach, we were able to monitor a human prostate tumor model for up to 10 days by near-infrared fluorescence and magnetic resonance imaging, with up to 6% of the injection dose remaining. Our results show that PhMV-like nanoparticles provide a promising and innovative platform for the development of next-generation diagnostic and therapeutic agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060085 | PMC |
http://dx.doi.org/10.1021/acsami.9b03956 | DOI Listing |
Viruses
November 2024
Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
Plant viruses and virus-like particles (VLPs) are safe for mammals and can be used as a carrier/platform for the presentation of foreign antigens in vaccine development. The aim of this study was to use the coat protein (CP) of Physalis mottle virus (PhMV) as a carrier to display the extracellular domain of the transmembrane protein M2 of influenza A virus (M2e). M2e is a highly conserved antigen, but to induce an effective immune response it must be linked to an adjuvant or carrier VLP.
View Article and Find Full Text PDFPlant Dis
November 2024
Chinese Academy of Agricultural Sciences Institute of Vegetables and Flowers, State Key Laboratory of Vegetable Biobreeding, Beijing, Beijing, China.
Small Sci
August 2023
Department of Radiology, University of California, San Diego, San Diego, CA.
Nanomedicine provides a promising platform for the molecular treatment of disease. An ongoing challenge in nanomedicine is the targeted delivery of intravenously administered nanoparticles to particular tissues, which is of special interest in cancer. In this study, we show that the conjugation of iRGD peptides, which specifically target tumor neovasculature, to the surface of Physalis mottle virus (PhMV)-like nanoparticles leads to rapid cellular uptake and tumor homing .
View Article and Find Full Text PDFNano Lett
March 2024
Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States.
Many virus-like particles (VLPs) have good chemical, thermal, and mechanical stabilities compared to those of other biologics. However, their stability needs to be improved for the commercialization and use in translation of VLP-based materials. We developed an endoskeleton-armored strategy for enhancing VLP stability.
View Article and Find Full Text PDFBioconjug Chem
September 2023
Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States.
An ongoing challenge in precision medicine is the efficient delivery of therapeutics to tissues/organs of interest. Nanoparticle delivery systems have the potential to overcome traditional limitations of drug and gene delivery through improved pharmacokinetics, tissue targeting, and stability of encapsulated cargo. Physalis mottle virus (PhMV)-like nanoparticles are a promising nanocarrier platform which can be chemically targeted on the exterior and interior surfaces through reactive amino acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!