Full-field X-ray imaging and microscopy with polymer compound refractive nano-lenses is demonstrated. Experiments were carried out at beamline ID13 at the European Synchrotron and yielded a resolution of 100 nm. The lenses were demonstrated to be functioning even after an absorbed dose of ∼10 Gy. This article also discusses issues related to lens aberrations, astigmatism and radiation stability, and thus ways of improving the lens further are considered. Polymer nano-lenses are versatile and are promissing for nano-focusing and compact X-ray microscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S1600577519001656 | DOI Listing |
Phys Eng Sci Med
January 2025
Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, 14155-1339, Iran.
Gastrin-releasing peptide receptors (GRPRs) overexpressed in many cancers are known as promising biomarkers to target tumors such as prostate, breast, and lung cancers. As the early diagnosis of the cancers can serve for better treatment of the patients, [In]In-DOTA-Pip-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 ([In]In-RM2) was prepared using an in-house developed Sn/In generator. 0.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210000, China.
Aiming at the effects caused by stress and deformation on Micro-Electro-Mechanical System (MEMS) sensors, the stress distribution in the radiation area of the MEMS infrared light source is investigated, and by simulating and optimizing the thickness of the composite support film of the chip structure in COMSOL, a film layer thickness matching with lower stress and deformation for the MEMS infrared light source is derived. The utilization of the particle swarm algorithm and backpropagation neural network model allowed for the optimization of simulation data, enabling regression prediction over a broader range of thicknesses and providing a more precise depiction of the stress distribution trend. In addition, the specifications of the MEMS device help us to analyze the design of the support film thickness in the processing of the residual stress within the controllable range.
View Article and Find Full Text PDFHeliyon
December 2024
Radiation Fusion Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
Electrode material capacities and cycle performances must improve for large-scale applications such as energy storage systems. Numerous investigations have developed cathode materials to improve lithium-ion batteries (LIBs) performance: however, few have examined new anode materials. In this study, we synthesized a Ni-B/reduced graphene oxide (RGO) composites via a simple chemical reaction method to enhance the stability of electrodes in LIBs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Soochow University, Soochow University, CHINA.
Anodic oxygen evolution reaction (OER) exhibits a sluggish four-electron transfer process, necessitating catalysts with exceptional catalytic activity to enhance its kinetic rate. Van der Waals layered oxides are ideal materials for catalyst design, yet its stability for acidic OER remains large obstacle. Doping provides a crucial way to improve the activity and stability simultaneously.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, People's Republic of China.
Diatomic catalysts (DACs) present unique opportunities for harnessing ensemble effects between adjacent metal atoms, thus, expanding the properties of single-atom catalysts (SACs). However, the precise preparation and characterization of this type of catalyst remains challenging. Following a precursor-preselected strategy, here, we report the synthesis of a carbon nitride-supported Pd-DAC, which achieves an excellent yield of 92% for photocatalytic water-donating transfer hydrogenation of 4-vinylphenol to 4-ethylphenol, far exceeding that of other metal species, including Pd single atoms (47%) and nanoparticles (1%).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!