Personalized scaffolding technologies for alveolar bone regenerative medicine.

Orthod Craniofac Res

Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan.

Published: May 2019

The reconstruction of alveolar bone defects associated with teeth and dental implants remains a clinical challenge in the treatment of patients affected by disease or injury of the alveolus. The aim of this review was to provide an overview on advances made in the use of personalized scaffolding technologies coupled with biologics, cells and gene therapies that offer future clinical applications for the treatment of patients requiring periodontal and alveolar bone regeneration. Over the past decade, advancements in three-dimensional (3D) imaging acquisition technologies such as cone-beam computed tomography (CBCT) and precise scaffold fabrication methods such as 3D bioprinting have resulted in personalized scaffolding constructs based on individual patient-specific anatomical data. Furthermore, 'fiber-guiding' scaffold designs utilize topographical cues to guide ligamentous fibers to form in orientation towards the root surface to improve tooth support. Therefore, a topic-focused literature search was conducted looking into fiber-guiding and image-based scaffolds and their associated clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6512820PMC
http://dx.doi.org/10.1111/ocr.12275DOI Listing

Publication Analysis

Top Keywords

personalized scaffolding
12
alveolar bone
12
scaffolding technologies
8
treatment patients
8
clinical applications
8
technologies alveolar
4
bone regenerative
4
regenerative medicine
4
medicine reconstruction
4
reconstruction alveolar
4

Similar Publications

Peripheral nerve repair (PNR) is a major healthcare challenge due to the limited regenerative capacity of the nervous system, often leading to severe functional impairments. While nerve autografts are the gold standard, their implications are constrained by issues such as donor site morbidity and limited availability, necessitating innovative alternatives like nerve guidance conduits (NGCs). However, the inherently slow nerve growth rate (∼1 mm/day) and prolonged neuroinflammation, delay recovery even with the use of passive (no-conductive) NGCs, resulting in muscle atrophy and loss of locomotor function.

View Article and Find Full Text PDF

Metal-Organic Frameworks (MOFs) gaining increasing interest in heterogeneous catalysis owing to their advantageous properties such as superior porosity, high surface area, ample catalytic sites. Their properties can be tailored by varying the metal ions or metal clusters (nodes) and organic linkers. Magnetically active nano core-shell MOF composites are also discovered for easy separation and reuse of catalyst.

View Article and Find Full Text PDF

Background: Rotator cuff repairs may fail because of compromised blood supply, suture anchor pullout, or poor fixation to bone. To augment the repairs and promote healing of the tears, orthobiologics, such a platelet-rich plasma (PRP), and biologic scaffolds have been applied with mixed results. Adipose allograft matrix (AAM), which recruits native cells to damaged tissues, may also be a potential treatment for rotator cuff tears.

View Article and Find Full Text PDF

Background: First-generation bioresorbable scaffolds (BRS) increased risks of stent thrombosis and adverse events. The Bioheart scaffold is a new poly-L-lactic acid-based BRS.

Objectives: This study sought to evaluate the efficacy and safety of the BRS in patients with coronary artery disease.

View Article and Find Full Text PDF

Background: The risk-benefit ratio of the Absorb bioresorbable vascular scaffold (BVS) may vary before and after 3 years, the time point of complete bioresorption of the poly-L-lactic acid scaffold.

Objectives: The aim of this study was to determine the time-varying outcomes of the Absorb BVS compared with cobalt-chromium everolimus-eluting stents (EES) from a large individual-patient-data pooled analysis of randomized trials.

Methods: The individual patient data from 5 trials that randomized 5,988 patients undergoing percutaneous coronary intervention to the Absorb BVS vs EES with 5-year follow-up were pooled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!