Objectives: The goal was to compare static versus dynamic bone-implant interface histology of mini-screws and to evaluate its relation to diameter and load.
Setting And Sample Population: Canine animal model.
Material And Methods: Custom-machined, titanium alloy (Ti6AI4V) mini-screws (n = 70) of 1.60, 2.00, 3.00 and 3.75 mm diameter were placed into edentulous sites in five skeletally mature beagle dogs. Using a split-mouth design, no load (NL) was applied to one side while a 2N load (L) was applied by calibrated coil springs on the other side. Intravenous bone labels were administered 21 and 7 days prior to sacrifice. Dogs were euthanized 90 days after screw placement. Bone sections were analysed under bright-field and epifluorescent light. The region of interest was defined as the bone within the threads of the screws. The following parameters were quantified: (a) Static-bone volume/tissue volume (BV/TV %) and bone-implant contact (BIC, %); (b) Dynamic-labelled bone/bone volume (LB/BV, %), and dynamic BIC (DBIC, %).
Results: BV/TV ranged from 71.2% to 85.0% of the screw surface. BIC ranged from 45.7% to 55.4% of the screw surface and was not affected by diameter (P = 0.66). In contrast, the percentage of DBIC did not vary with the applied load (P = 0.41); however, it correlated significantly with the diameter of the screw (P = 0.001).
Conclusion: The percentage of DBIC that is actively remodelling increases with increasing diameter of the screw. Dynamic histomorphometry is more sensitive to detecting changes in bone-implant contact when compared to static measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ocr.12293 | DOI Listing |
J Orthop Res
January 2025
Australian Centre for Precision Health and Technology (PRECISE), Griffith University, Gold Coast, Australia.
Effective surgical planning is crucial for maximizing patient outcomes following complex orthopedic procedures such as proximal femoral osteotomy. In silico simulations can be used to assess how surgical variations in proximal femur geometry, such as femur neck-shaft and anteversion angles, affect postoperative system mechanics. This study investigated the sensitivity of femur mechanics to postoperative neck-shaft angles, anteversion angles, and osteotomy contact areas using patient-specific finite element analysis informed by neuromusculoskeletal models.
View Article and Find Full Text PDFJ Prosthodont
January 2025
Department of Conservative Dentistry and Endodontics, Sri Ramachandra Dental College and Hospital, Chennai, India.
Purpose: Biomimetic agents are being researched for their potential to stimulate bone formation and boost bone-implant contact. The objective of this study was to assess how osseointegration of dental implants is impacted by platelet-rich fibrin.
Materials And Methods: The present study was a randomized clinical trial with a split mouth design.
ACS Omega
December 2024
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China.
Metal 3D printing has been used in the manufacturing of dental implants. Its technical advantages include high material utilization and the capacity to form arbitrarily complex structures. However, 3D printing alone is insufficient for manufacturing two-stage titanium implants due to the limited precision in printing titanium alloy parts.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Faculty of General Medicine, Yaroslavl State Medical University, Yaroslavl, Russia.
Background And Objective: Dental implant therapy faces challenges in patients with Type 1 and Type 2 Diabetes Mellitus (T1DM and T2DM) due to adverse effects on bone metabolism and immune response. Despite advancements, diabetic patients face higher risks of peri-implantitis and compromised osseointegration. This review assesses the impact of anti-diabetic medications on implant outcomes, offering insights to bridge the gap between animal studies and clinical practice.
View Article and Find Full Text PDFConnect Tissue Res
December 2024
Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
Aim: We aimed to investigate whether α-ketoglutarate (AKG) can promote autophagic activity under a peri-implant condition to enhance the osseointegration of dental implant in rats with osteoporosis (OP).
Methods: Con, Model and AKG groups were established for the random allocation of thirty rats ( = 10). Their bone metabolism indicators were measured.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!