Osteocytes and mechanical loading: The Wnt connection.

Orthod Craniofac Res

Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.

Published: May 2019

Bone adapts to the mechanical forces that it experiences. Orthodontic tooth movement harnesses the cell- and tissue-level properties of mechanotransduction to achieve alignment and reorganization of the dentition. However, the mechanisms of action that permit bone resorption and formation in response to loads placed on the teeth are incompletely elucidated, though several mechanisms have been identified. Wnt/Lrp5 signalling in osteocytes is a key pathway that modulates bone tissue's response to load. Numerous mouse models that harbour knock-in, knockout and transgenic/overexpression alleles targeting genes related to Wnt signalling point to the necessity of Wnt/Lrp5, and its localization to osteocytes, for proper mechanotransduction in bone. Alveolar bone is rich in osteocytes and is a highly mechanoresponsive tissue in which components of the canonical Wnt signalling cascade have been identified. As Wnt-based agents become clinically available in the next several years, the major challenge that lies ahead will be to gain a more complete understanding of Wnt biology in alveolar bone so that improved/expedited tooth movement becomes a possibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364905PMC
http://dx.doi.org/10.1111/ocr.12282DOI Listing

Publication Analysis

Top Keywords

tooth movement
8
wnt signalling
8
alveolar bone
8
bone
6
osteocytes
4
osteocytes mechanical
4
mechanical loading
4
wnt
4
loading wnt
4
wnt connection
4

Similar Publications

Although the modulus of elasticity of the human periodontal ligament (E) values used in dentistry widely ranged from 0.01 to 175 MPa, the exact E value has not been determined. This study aimed to verify whether and how E values affect the stress distribution over the tooth and periodontium structures, and to determine the appropriate E range.

View Article and Find Full Text PDF

Objective:  The mechanical stimulation known as orthodontic mechanical force (OMF) causes biological reactions in orthodontic tooth movement (OTM). Heat shock protein-70 (HSP-70) needs pro-inflammatory cytokines to trigger bone resorption in OTM; nevertheless, heat shock protein-10 (HSP-10), a "Alarmin" cytokine, should control these pro-inflammatory cytokines to get the best alveolar bone remodeling (ABR). L.

View Article and Find Full Text PDF

Surgically facilitated orthodontics with clear aligners for severe malocclusion and gingival recessions.

Clin Adv Periodontics

January 2025

Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, New York, USA.

Background: Gingival recession defects (GRDs) pose functional and esthetic concerns and may be associated with unfavorable tooth positions. Surgically facilitated orthodontic treatment (SFOT) with clear aligners can be a valuable option for adults with severe malocclusion and GRDs.

Methods: A 28-year-old male presented with severe dental crowding, Class III dental malocclusion, localized tooth crossbites, and tapered maxillary arch.

View Article and Find Full Text PDF

This case report presents the multidisciplinary treatment of a male patient with a complex form of frontonasal dysplasia who presented with a 0 to 14 facial cleft, mild hypertelorism, absence of the nasal medial process of the nose, and frontonasal encephalocele. Cranial and plastic surgeries were performed to correct hypertelorism and improve the esthetic appearance of the frontonasal region. In the permanent dentition, the patient presented a Class II, division 1 malocclusion with severe maxillary constriction and bilateral posterior crossbite.

View Article and Find Full Text PDF

Objective: To explore the genotype-phenotype correlation in a Charcot-Marie-Tooth type 2A2A (CMT2A2A) pedigree and to provide genetic counseling for its subsequent pregnancies.

Methods: A Chinese pedigree presenting with "lower limb muscle atrophy and movement disorders" at the Prenatal Diagnosis Center of Xuzhou Central Hospital between January and August 2024 was selected as the study subject. Relevant clinical data were collected from the pedigree members.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!