To describe the current use of noninvasive monitoring compared with traditional invasive monitoring in Pediatric Critical Care Medicine (PCCM) accredited fellowship programs in the United States. A web-based survey with the primary aim of describing the utilization of noninvasive monitoring compared with invasive monitoring was distributed to PCCM program directors (PDs) at the 64 accredited fellowship training programs. Questions focused on demographics and the utilization of invasive and noninvasive monitoring for specific patient populations and disease states. Forty-two (66%) PDs responded to the survey. Capnography and near-infrared spectroscopy (NIRS) were the most commonly reported noninvasive monitoring technology. Arterial and central venous catheters were widely used. Other invasive monitoring devices were used sparingly. Despite widespread use of both invasive and noninvasive monitoring in academic pediatric critical care units across the United States, there is significant variability in the use of noninvasive monitoring compared with invasive monitoring. Further investigation is needed to define the standard of care for the use of noninvasive monitors as practitioners attempt to optimize care while minimizing risks and complications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6260351 | PMC |
http://dx.doi.org/10.1055/s-0038-1623480 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany.
Two-dimensional layered materials (2DLMs) have received increasing attention for their potential in bioelectronics due to their favorable electrical, optical, and mechanical properties. The transformation of the planar structures of 2DLMs into complex 3D shapes is a key strategic step toward creating conformal biointerfaces with cells and applying them as scaffolds to simultaneously guide their growth to tissues and enable integrated bioelectronic monitoring. Using a strain-engineered self-foldable bilayer, we demonstrate the facile formation of predetermined 3D microstructures of 2DLMs with controllable curvatures, called microrolls.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Department of Biomedical Engineering, Washington University in St. Louis; Department of Obstetrics & Gynecology, Washington University in St. Louis;
For noninvasive light-based physiological monitoring, optimal wavelengths of individual tissue components can be identified using absorption spectroscopy. However, because of the lack of sensitivity of hardware at longer wavelengths, absorption spectroscopy has typically been applied for wavelengths in the visible (VIS) and near-infrared (NIR) range from 400 to 1,000 nm. Hardware advancements in the short-wave infrared (SWIR) range have enabled investigators to explore wavelengths in the ~1,000 nm to 3,000 nm range in which fall characteristic absorption peaks for lipid, protein, and water.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, WI, 53705, USA.
Purpose: Trophoblast cell-surface antigen 2 (Trop2) is overexpressed in various solid tumors and contributes to tumor progression, while its expression remains low in normal tissues. Trop2-targeting antibody-drug conjugate (ADC), sacituzumab govitecan-hziy (Trodelvy), has shown efficacy in targeting this antigen. Leveraging the enhanced specificity of ADCs, we conducted the first immunoPET imaging study of Trop2 expression in gastric cancer (GC) and triple-negative breast cancer (TNBC) models using Zr-labeled Trodelvy ([Zr]Zr-DFO-Trodelvy).
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.
Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).
View Article and Find Full Text PDFR I Med J (2013)
February 2025
Alpert Medical School of Brown University, Department of Medicine, Division of Cardiology, Rhode Island Hospital.
Cardiac Positron Emission Tomography (PET) is a power- ful imaging tool with diverse applications in the detection and diagnosis of various cardiac conditions, including inflammatory, infectious, and neoplastic processes. Using the radiotracer 18F-fluorodeoxyglucose (18F-FDG), cardiac PET enables the identification of cardiac involvement in diseases such as sarcoidosis and severe infections affecting the heart tissue. Additionally, 18F-FDG PET is valuable in the evaluation of cardiac masses, helping to assess their metabolic activity and potential malignancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!