Attenuation of Multiple Virulence Factors by Citral.

Front Microbiol

College of Food Science and Engineering, Northwest A&F University, Yangling, China.

Published: April 2019

Citral was known as a widely used food additive with antimicrobial activity; however, whether it can be a potential therapy for controlling bacterial virulence with less risk of antimicrobial resistance remains to be investigated. Herein, we demonstrated that virulence factors that contribute to infection were effectively inhibited to different degrees by sub-inhibitory concentrations (3.125, 6.25, and 12.5 μg/ml) of citral. Citral exerted strong inhibition of autoinducer-2 production and adhesion to Caco-2 cells. Biofilm formation of was effectively decreased by citral at 30°C and 20°C. Moreover, citral repressed the transcription of genes related to flagella biosynthesis, biofilm formation, type III secretion effectors, and antibiotic resistance, as well as genes contributing to the regulation of quorum sensing and toxin production. Therefore, citral could effectively attenuate multiple virulence properties of , and its effect on infection by needs further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6495081PMC
http://dx.doi.org/10.3389/fmicb.2019.00894DOI Listing

Publication Analysis

Top Keywords

multiple virulence
8
virulence factors
8
citral citral
8
biofilm formation
8
citral
7
attenuation multiple
4
virulence
4
factors citral
4
citral food
4
food additive
4

Similar Publications

Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.

View Article and Find Full Text PDF

A comprehensive review of current insights into the virulence factors of SARS-CoV-2.

J Virol

January 2025

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.

The evolution of SARS-CoV-2 pathogenicity has been a major focus of attention. However, the determinants of pathogenicity are still unclear. Various hypotheses have attempted to elucidate the mechanisms underlying the evolution of viral pathogenicity, but a definitive conclusion has yet to be reached.

View Article and Find Full Text PDF

<b>Background and Objective:</b> It is well documented that Whole Genome Sequencing (WGS) has recently used to explore new resistance patterns and track the dissemination of extensive and pan drug-resistant microbes in healthcare settings. This article explores the link between traumatic infections caused by road traffic accidents (RTAs) leading to coma and the development of chest infections caused by extensively drug-resistant (XDR) <i>Klebsiella pneumoniae</i> and <i>Pseudomonas aeruginosa</i>. <b>Materials and Methods:</b> The study was carried out from March to December 2022 which included a 45-year-old male patient admitted to the ICU of Al Ramadi Teaching Hospitals following a severe RTA that resulted in a TBI and subsequent coma.

View Article and Find Full Text PDF

Background: Methicillin-resistant (MRSA) poses a significant challenge in clinical environments due to its resistance to standard antibiotics. Protein A (SpA), a crucial virulence factor of MRSA, undermines host immune responses, making it an attractive target for vaccine development. This study aimed to identify potential epitopes within SpA that could elicit robust immune responses, ultimately contributing to the combat against multidrug-resistant (MDR) MRSA.

View Article and Find Full Text PDF

Enhanced virulence of Acinetobacter johnsonii at low temperatures induces acute immune response and systemic infection in American bullfrogs (Aquarana catesbeiana).

Vet Microbiol

January 2025

Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China. Electronic address:

Acinetobacter johnsonii is a denitrifying bacterium commonly used as an environmental probiotic in wastewater treatment. However, research on its potential pathogenicity to animals is limited. During an epidemiological survey conducted from 2022 to 2024 at bullfrog farms in Guangdong Province, China, multiple strains were isolated from diseased bullfrogs during the low-temperature season.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!