Aerosols can act as cloud condensation nuclei and ice nuclei, resulting in changes in cloud droplet/particle number/size, and hence altering the radiation budget. This study investigates the interactions between aerosols and ice clouds by incorporating the latest ice clouds parameterization in an atmospheric general circulation model. The simulation shows a decrease in effective ice cloud crystal size corresponding to aerosol increase, referred to as the aerosol first indirect effect, which has not been comprehensively studied. Ice clouds with smaller particles reflect more shortwave radiation and absorb more infrared radiation, resulting in radiation change by 0.5-1.0 W/m at the top of the atmosphere (TOA). The TOA radiation field is also influenced by cloud cover change due to aerosol-induced circulation change. Such aerosol effects on precipitation highly depend on the existence of a deep convection system: interactions between aerosols and ice clouds create dipole precipitation anomalies in the Asian monsoon regions; while in West Africa, enhanced convections are constrained by anticyclone effects at high levels and little precipitation increase is found. We also conduct an experiment to assess interactions between aerosols and liquid clouds and compare the climatic effects with that due to ice clouds. Radiation and temperature changes generated by liquid clouds are normally 1-2 times larger than those generated by ice clouds. The radiation change has a closer relationship to liquid cloud droplet size than liquid cloud cover, in contrast with what we find for ice clouds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501598PMC
http://dx.doi.org/10.1007/s00382-018-4476-9DOI Listing

Publication Analysis

Top Keywords

ice clouds
28
interactions aerosols
12
clouds
10
ice
9
aerosol indirect
8
west africa
8
aerosols ice
8
radiation change
8
cloud cover
8
liquid clouds
8

Similar Publications

The Role of Geometry on the Ease of Solidification Inside and Out of Cylindrical Nanopores.

Langmuir

December 2024

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9.

We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentially limiting steps: (i) the solid nucleation from liquid inside a single pore and (ii) the bridging of multiple pores on the particle surface.

View Article and Find Full Text PDF

Cloud Removal in the Tibetan Plateau Region Based on Self-Attention and Local-Attention Models.

Sensors (Basel)

December 2024

School of Surveying and Geo-Informatics, Shandong Jianzhu University, Fengming Road, Jinan 250101, China.

Optical remote sensing images have a wide range of applications but are often affected by cloud cover, which interferes with subsequent analysis. Therefore, cloud removal has become indispensable in remote sensing data processing. The Tibetan Plateau, as a sensitive region to climate change, plays a crucial role in the East Asian water cycle and regional climate due to its snow cover.

View Article and Find Full Text PDF
Article Synopsis
  • * This study focused on measuring the ice nucleation rate of 2-methyltetrols (2-MT), a component of certain organic aerosols, and found that as the aerosol's viscosity increases, its ice nucleation ability also increases significantly, especially when transitioning from liquid to semisolid states.
  • * A new model based on classical nucleation theory was created to quantify the relationship between viscosity and ice nucleation rate, which can be used in climate models to better represent cir
View Article and Find Full Text PDF

New quantified climate reconstruction in southern China suggests a potential influence of winter cloud cover across East Asia during the Holocene.

Sci Total Environ

December 2024

Guangdong Key Lab of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China. Electronic address:

Previous studies have advanced our understanding of paleoclimate features and dynamics in East Asia, particularly within the East Asian monsoon domain (EAMD) since the last glacial period. However, a lack of quantitative reconstructions in the boundary area between tropical and subtropical zones has largely hindered our spatial comprehension of the relationship between precipitation and temperature throughout the EAMD. In this study, we present a continuous pollen record from the Pearl River delta over the past 13.

View Article and Find Full Text PDF

New particle formation (NPF) in the tropical upper troposphere is a globally important source of atmospheric aerosols. It is known to occur over the Amazon basin, but the nucleation mechanism and chemical precursors have yet to be identified. Here we present comprehensive in situ aircraft measurements showing that extremely low-volatile oxidation products of isoprene, particularly certain organonitrates, drive NPF in the Amazonian upper troposphere.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!