Ikaros encodes a transcription factor that functions as a tumor suppressor in T-cell acute lymphoblastic leukemia (T-ALL). The mechanisms through which Ikaros regulates gene expression and cellular proliferation in T-ALL are unknown. Re-introduction of Ikaros into Ikaros-null T-ALL cells resulted in cessation of cellular proliferation and induction of T-cell differentiation. We performed dynamic, global, epigenomic, and gene expression analyses to determine the mechanisms of Ikaros tumor suppressor activity. Our results identified novel Ikaros functions in the epigenetic regulation of gene expression: Ikaros directly regulates de novo formation and depletion of enhancers, de novo formation of active enhancers and activation of poised enhancers; Ikaros directly induces the formation of super-enhancers; and Ikaros demonstrates pioneering activity by directly regulating chromatin accessibility. Dynamic analyses demonstrate the long-lasting effects of Ikaros DNA binding on enhancer activation, de novo formation of enhancers and super-enhancers, and chromatin accessibility. Our results establish that Ikaros' tumor suppressor function occurs via global regulation of the enhancer and super-enhancer landscape and through pioneering activity. Expression analysis identified a large number of novel signaling pathways that are directly regulated by Ikaros and Ikaros-induced enhancers, and that are responsible for the cessation of proliferation and induction of T-cell differentiation in T-ALL cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842075PMC
http://dx.doi.org/10.1038/s41375-019-0474-0DOI Listing

Publication Analysis

Top Keywords

tumor suppressor
16
pioneering activity
12
gene expression
12
novo formation
12
ikaros
11
ikaros tumor
8
suppressor function
8
active enhancers
8
enhancers super-enhancers
8
mechanisms ikaros
8

Similar Publications

Robust and inducible genome editing via an all-in-one prime editor in human pluripotent stem cells.

Nat Commun

December 2024

The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA.

Prime editing (PE) allows for precise genome editing in human pluripotent stem cells (hPSCs), such as introducing single nucleotide modifications, small insertions or deletions at a specific genomic locus. Here, we systematically compare a panel of prime editing conditions in hPSCs and generate a potent prime editor, "PE-Plus", through co-inhibition of mismatch repair and p53-mediated cellular stress responses. We further establish an inducible prime editing platform in hPSCs by incorporating the PE-Plus into a safe-harbor locus and demonstrated temporal control of precise editing in both hPSCs and differentiated cells.

View Article and Find Full Text PDF

Investigation of the impact of R273H and R273C mutations on the DNA binding domain of P53 protein through molecular dynamic simulation.

J Biomol Struct Dyn

February 2025

Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.

The P53 protein, a cancer-associated transcriptional factor and tumor suppressor, houses a Zn ion in its DNA-binding domain (DBD), essential for sequence-specific DNA binding. However, common mutations at position 273, specifically from Arginine to Histidine and Cysteine, lead to a loss of function as a tumor suppressor, also called DNA contact mutations. The mutant (MT) P53 structure cannot stabilize DNA due to inadequate interaction.

View Article and Find Full Text PDF

RHOBTB2 is a member of the Rho GTPases subfamily of signaling proteins, known tumor suppressors whose loss of function and decreased expression is associated with cancer onset. Beyond its cancer-related role, RHOBTB2 is implicated in rare neurodevelopmental disorders, specifically -related disorders, recognized in 2018 as a subtype of developmental and epileptic encephalopathies (DEE). Common symptoms of these disorders include early-onset epilepsy, severe intellectual disability, microcephaly, and movement disorders.

View Article and Find Full Text PDF

Dr. Jekyll or Mr. Hyde: The multifaceted roles of miR-145-5p in human health and disease.

Noncoding RNA Res

April 2025

Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.

MicroRNAs (miRNAs) are classified as small, non-coding RNAs that play crucial roles in diverse biological processes, including cellular development, differentiation, growth, and metabolism. MiRNAs regulate gene expression by recognizing complementary sequences within messenger RNA (mRNA) molecules. Recent studies have revealed that miR-145-5p functions as a tumor suppressor in several cancers, including lung, liver, and breast cancers.

View Article and Find Full Text PDF

Insights into targeting LKB1 in tumorigenesis.

Genes Dis

March 2025

The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada.

Genetic alterations to serine-threonine kinase 11 () have been implicated in Peutz-Jeghers syndrome and tumorigenesis. Further exploration of the context-specific roles of liver kinase B1 (LKB1; encoded by ) observed that it regulates AMP-activated protein kinase (AMPK) and AMPK-related kinases. Given that both migration and proliferation are enhanced with the loss of LKB1 activity combined with the prevalence of genetic alterations in cancer biopsies, LKB1 was marked as a tumor suppressor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!