Gene expression profiling analysis to investigate the role of remote ischemic postconditioning in ischemia-reperfusion injury in rats.

BMC Genomics

Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, 12 Langshan Road, Nanshan District, Shenzhen, 518057, Guangdong Province, People's Republic of China.

Published: May 2019

Background: Blood flow restoration is a definitive therapy for salvaging the myocardium following ischemic injury. Nevertheless, the sudden restoration of blood flow to the ischemic myocardium can induce ischemia-reperfusion injury (IRI).

Results: Herein, we investigated the cardioprotective effect of remote ischemic postconditioning (RPostC) through our in vivo rat model of myocardial IRI. The study included three groups: the control group, the IRI group, and the IRI + RPostC group. Ischemia-reperfusion treatment led to an increase in the myocardial infarction area, which was inhibited by RPostC. In contrast to that in the control group, the myocardial apoptosis level was enhanced in the IRI group, whereas RPostC treatment decreased IRI-induced cellular apoptosis. Affymetrix Rat Gene 2.0 ST chip data identified a total of 265 upregulated genes and 267 downregulated genes between the IRI and IRI + RPostC groups. A group of differentially expressed noncoding RNAs (ncRNAs), such as MTA_TC0600002772.mm, MTA_TC1300002394.mm, U7 small nuclear RNA (Rnu7) and RGD7543256_1, were identified. Gene Ontology (GO) enrichment analysis indicated that the positive regulation of some molecular functions, such as GTPase activity, GTP binding, cyclic-nucleotide phosphodiesterase activity and cytokine activity, may contribute to the cardioprotective role of RPostC. Moreover, pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggested the potential implication of the TNF signaling pathway and Toll-like receptor signaling pathway. Global signal transduction network analysis, co-expression network analysis and quantitative real-time polymerase chain reaction analysis further identified several core genes, including Pdgfra, Stat1, Lifr and Stfa3.

Conclusion: Remote ischemic postconditioning treatment can decrease IRI-mediated myocardial apoptosis by regulating multiple processes and pathways, such as GTPase activity, cytokine activity, and the TNF and Toll-like receptor signaling pathways. The potential role of the above ncRNAs and core genes in IRI-induced cardiac damage merits further study as well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509872PMC
http://dx.doi.org/10.1186/s12864-019-5743-9DOI Listing

Publication Analysis

Top Keywords

remote ischemic
12
ischemic postconditioning
12
ischemia-reperfusion injury
8
blood flow
8
control group
8
iri group
8
myocardial apoptosis
8
enrichment analysis
8
gtpase activity
8
activity cytokine
8

Similar Publications

Objective: Limb ischemia-reperfusion injury caused by repeated tourniquet application usually leads to acute kidney injury, adversely affecting patient prognosis. This study aimed to investigate the renoprotective effect of remote ischemic preconditioning (RIPC) in patients undergoing extremity surgery with repeated tourniquet application.

Methods: 64 patients were enrolled and randomly divided into an RIPC group and a control group, with 32 patients in each.

View Article and Find Full Text PDF

Background: Cholecystectomy often disrupts autonomic balance, impacting recovery. Remote ischemic preconditioning (RIPC) may enhance ANS function and protect organs, but its role in cholecystectomy is unclear.

Methods: In this randomized controlled trial, 80 patients aged 45 to 65 years, scheduled for elective laparoscopic cholecystectomy, were randomly assigned to either the RIPC group or the control group.

View Article and Find Full Text PDF

The spleen in ischaemic heart disease.

Nat Rev Cardiol

January 2025

Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.

Article Synopsis
  • Ischaemic heart disease results from coronary atherosclerosis, which is linked to systemic inflammation involving various immune cells released by the spleen.
  • Prolonged inflammation can lead to ischaemic heart failure, while the spleen's interaction with the nervous system can modulate immune responses and protect the heart from damage.
  • Splenectomy, which removes the spleen, increases mortality risk from ischaemic heart disease, highlighting the spleen's crucial role in immune responses and cardiovascular protection.
View Article and Find Full Text PDF

Remote ischemic preconditioning (RIPC) is reported to have early-phase and delayed-phase organ-protective effects. Previous studies have focused on the organ protection of a single RIPC protocol, and the clinical outcomes remain uncertain. Whether the modified RIPC (mRIPC) protocol performed repeatedly provides cardiopulmonary protection is still uncertain.

View Article and Find Full Text PDF

Urinary biomarker studies in cardiothoracic and kidney-sparing surgery have demonstrated renal protection by Remote Ischaemic PreConditioning (RIPC). RIPC intervention generates cycles of ischaemia and reperfusion of the limbs before the actual ischaemia of the target organ (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!