The aim of the research is to identify the changes which occur in lignin from miscanthus and sorghum, one of the main biomass components, as a result of an anaerobic digestion (AD) process. The percentage content and structure of lignin before and after the fermentation process were analysed using biomass harvested in two growing periods-before and after vegetation. It was shown that plants at different developmental stages differ in lignin content. During plant growth, the lignin structure also changes-the to (S/G) increases, whereas the aliphatic and aromatic structure ratio (Al/Ar) decreases. The AD process leads to an increase in percentage lignin content in cell walls, and the increase is higher for plants harvested during vegetation. It has been shown in studies that the methane fermentation of miscanthus and sorghum produces waste containing a large amount of lignin, the structure of which is altered relative to native lignin. The quantity and the new, simplified structure of lignin create new possibilities for using this aromatic polymer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572192 | PMC |
http://dx.doi.org/10.3390/polym11050835 | DOI Listing |
Int J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest, Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:
This study investigates the mixing effects on the enzymatic hydrolysis of microcrystalline cellulose (MCC) and dilute-acid pretreated corncob substrates under high-solid conditions. Enzymatic hydrolysis experiments were conducted to assess cellulose conversion rates under varying mixing conditions (0, 50, 150, and 250 rpm) and solids loadings (5 %, 15 %, 25 %, and 35 %, w/v), and distinct physicochemical properties of the substrates were characterized. Additionally, the role of mixing conditions and solid loadings on cellulose hydrolysis kinetics and enzyme adsorption on both substrates and lignin were elucidated.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Forest Pathology Research Lab, Faculty of Agriculture and Forestry, Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland.
Background: Mutualistic mycorrhiza fungi that live in symbiosis with plants facilitates nutrient and water acquisition, improving tree growth and performance. In this study, we evaluated the potential of mutualistic fungal inoculation to improve the growth and disease resistance of Scots pine (Pinus sylvestris L.) against the forest pathogen Heterobasidion annosum.
View Article and Find Full Text PDFNat Commun
January 2025
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, The Pennsylvania State University, University Park, PA, United States of America.
Using maize plants expressing an apoplast targeted Aspergillus niger ferulic acid esterase (FAEA), with FAEA driven by a Lolium multiflorum senescence enhanced promoter (LmSee1), we extended measurements of FAEA activity to late-stage senescing plants and measured the stability of FAEA activity following stover storage. The impact of FAEA expression on cell wall hydroxycinnamic acid levels and arabinoxylan (AX) cross-links, and on the levels of cell wall sugars, acetyl bromide lignin and sugar release following saccharification by a cocktail of cellulases and xylanases, was assessed during plant development to full leaf senescence. These were determined in both individual internodes and in combined leaves and combined internodes of FAEA expressing and control partner plants.
View Article and Find Full Text PDFFront Fungal Biol
December 2024
Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia.
The growing demand for novel enzyme producers to meet industrial and environmental needs has driven interest in lignocellulose-degrading fungi. In this study, lignocellulolytic enzyme production capabilities of environmental fungal isolates collected from boreal coniferous and nemoral summer green deciduous forests were investigated, using Congo Red, ABTS, and Azure B as indicators of cellulolytic and ligninolytic enzyme productions. Through qualitative and quantitative assays, the study aimed to identify promising species for lignocellulose-degrading enzyme secretion and assess their potential for biotechnological applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!