Although the effects of intense noise exposure on the peripheral and central auditory pathway have been well characterized, its effects on non-classical auditory structures in the brain, such as the hippocampus, are less well understood. Previously, we demonstrated that noise-induced hearing loss causes a significant long-term reduction in hippocampal neurogenesis and cell proliferation. Given the known suppressive effects of stress hormones on neurogenesis, the goal of the present study was to determine if activation of the stress response is an underlying mechanism for the long-term reduction in hippocampal neurogenesis observed following noise trauma. To accomplish this, we monitored basal and reactive blood plasma levels of the stress hormone corticosterone in rats for ten weeks following acoustic trauma, and quantified changes in hippocampal glucocorticoid and mineralocorticoid receptors. Our results indicate that long-term auditory deprivation does not cause a persistent increase in basal or reactive stress hormone levels in the weeks following noise exposure. Instead, we observed a greater decline in reactive corticosterone release in noise-exposed rats between the first and tenth week of sampling compared to control rats. We also observed a significant increase in hippocampal glucocorticoid receptor expression which may cause greater hippocampal sensitivity to circulating glucocorticoid levels and result in glucocorticoid-induced suppression of neurogenesis, as well as increased feedback inhibition on the HPA axis. No change in mineralocorticoid receptor expression was observed between control and noise exposed rats. These results highlight the adverse effect of intense noise exposure and auditory deprivation on the hippocampus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035127 | PMC |
http://dx.doi.org/10.1016/j.heares.2019.04.013 | DOI Listing |
Introduction: This study aimed to explore the impact and mechanism of Scutellariae radix (SR), dried root of Scutellaria baicalensis Georgi of Labiatae, on prenatal stress (PS) induced anxiety-like and depression-like behavior in the offspring in a mouse prenatal stress model.
Methods: The open field test (OFT), tail suspension test (TST), and forced swimming test (FST) were utilized to assess the behavior of the offspring. Histological changes were evaluated using HE staining and Nissl staining.
Int J Mol Sci
November 2024
Medical Department, Max Zeller Soehne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland.
Chronic stress is a key factor in the development of depression. It leads to hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis, which in turn increases the formation of glucocorticoids (GCs). Chronically elevated GC levels disrupt neuroplasticity and affect brain lipid metabolism, which may, ultimately, contribute to the development of depression.
View Article and Find Full Text PDFAging Dis
December 2024
School of Pharmacy, Guizhou Medical University, Guizhou, China.
Adult hippocampal neurogenesis (AHN) is crucial to various brain functions. Neurodegeneration, neuroinflammation and stress can impair AHN, contributing to the development of neurological and psychiatric disorders. Stress is known to extensively affect both the brain and peripheral immune system.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Research Institute of Mental Health, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaja, 4, 634014 Tomsk, Russia.
Dysregulation in the stress-response system as a result of genetical mutation can provoke the manifestation of affective disorders under stress conditions. Mutations in the human gene is one of the main risk factors of affective disorders. It was known that DISC1 regulates a large number of proteins including BMAL1, which is involved in the regulation of glucocorticoid synthesis in the adrenal glands and the sensitivity of glucocorticoid receptor target genes.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China.
Glucocorticoids are known to influence hippocampal function, but their rapid non-genomic effects on specific neurons in the hippocampal trisynaptic circuit remain underexplored. This study investigated the immediate effects of glucocorticoids on CA1 and CA3 pyramidal neurons, and dentate gyrus (DG) granule neurons in rats using the patch-clamp technique. We found that a 5 min extracellular application of corticosterone significantly reduced action potential firing frequency in CA1 pyramidal neurons, while no effects were observed in CA3 or DG neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!