The tert-butylphenols (TBPs) are one group of alkylated phenolic compounds with wide applications in UV absorbers and antioxidants. They are becoming contaminants of emerging concern with residues frequently detected in natural surface water or drinking water. The direct sunlight may photolyze TBPs in waters and affect their aquatic toxicities; however, such data are very limited. In the present study, we investigate the photodegradation of 2,6-DTBP by direct sunlight in water and compare the aquatic toxicities of 2,6-DTBP with that of its product toward Photobacterium phosphoreum. 2,6-DTBP is photodegraded by 71.31 ± 2.64% under simulated sunlight following a pseudo-first-order kinetics with rate constant (k) of 0.061 h. Density functional theory simulations at M06-2X/def2-SVP level reveal that the photodegradation occurred sequentially through oxidation, photo-isomerization and hydrogenation. The degradation product 2,5-DTBP is toxic to P. phosphoreum (EC 3.389 × 10 mol/L) whereas 2,6-DTBP is not harmful (EC 3.917 × 10 mol/L) as designated by the European Union Standard, indicating the enhanced toxicities driven by the direct sunlight photodegradation. We demonstrate the enhanced toxicities of 2,6-DTBP by natural sunlight, suggesting that negligence of photodegradation of TBPs-related contaminants will underestimate the comprehensive risk of these emerging contaminant in natural waters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2019.04.123 | DOI Listing |
Sci Data
December 2024
Slovak University of Technology, Faculty of Informatics and Information Technologies, Bratislava, 842 16, Slovakia.
In this paper, we describe the dataset captured with our proprietary data capture solution mounted on top of a Land Rover Defender vehicle. The captured data are the real data of drives on various Slovak roads. The total dataset consist of almost 33 hours of driving with a automotive grade FPD Link camera with 30 fps and with additional sensors such as high-precision GNSS sensor and modem towards mobile data connectivity LTE and 5 G.
View Article and Find Full Text PDFCurr Opin Chem Biol
December 2024
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA. Electronic address:
Enzymes catalyze molecular reactions with remarkable efficiency and selectivity under mild conditions. Photoactivated enzymes make use of a light-absorbing chromophore to drive chemical transformations, ideally using sunlight as an energy source. The direct attachment of a chromophore to native enzymes is advantageous, as information on the underlying catalytic mechanisms can be obtained.
View Article and Find Full Text PDFIn Saccharomyces cerevisiae cells, the bulk of mitochondrial DNA (mtDNA) replication is mediated by the replicative high-fidelity DNA polymerase γ. However, upon UV irradiation low-fidelity translesion polymerases: Polη, Polζ and Rev1, participate in an error-free replicative bypass of UV-induced lesions in mtDNA. We analysed how translesion polymerases could function in mitochondria.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
Modifying ZnO nanorods with graphene oxide (GO) is crucial for enhancing photocatalytic degradation by boosting the concentration of reactive oxygen species (ROS) in the reaction medium. In this study, we present a straightforward chemical synthesis of ZnO nanorods embedded on GO, forming a novel nanocomposite, GOZ. This composite serves as an efficient photocatalyst for the sunlight-driven degradation of methylene blue (MB) and ciprofloxacin (CIP).
View Article and Find Full Text PDFAcc Chem Res
December 2024
Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
ConspectusOrganic mixed ionic electronic conductors (OMIECs) represent an exciting and emerging class of materials that have recently revitalized the field of organic semiconductors. OMIECs are particularly attractive because they allow both ionic and electronic transport while retaining the inherent benefits of organic semiconducting materials such as mechanical conformability and biocompatibility. These combined properties make the OMIECs ideal for applications in bioelectronics, energy storage, neuromorphic computing, and electrochemical transistors for sensing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!