The complexity of modern multi-parametric MRI has increasingly challenged conventional interpretations of such images. Machine learning has emerged as a powerful approach to integrating diverse and complex imaging data into signatures of diagnostic and predictive value. It has also allowed us to progress from group comparisons to imaging biomarkers that offer value on an individual basis. We review several directions of research around this topic, emphasizing the use of machine learning in personalized predictions of clinical outcome, in breaking down broad umbrella diagnostic categories into more detailed and precise subtypes, and in non-invasively estimating cancer molecular characteristics. These methods and studies contribute to the field of precision medicine, by introducing more specific diagnostic and predictive biomarkers of clinical outcome, therefore pointing to better matching of treatments to patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832825PMC
http://dx.doi.org/10.1016/j.mri.2019.04.012DOI Listing

Publication Analysis

Top Keywords

machine learning
8
diagnostic predictive
8
clinical outcome
8
precision diagnostics
4
diagnostics based
4
based machine
4
machine learning-derived
4
learning-derived imaging
4
imaging signatures
4
signatures complexity
4

Similar Publications

Background: Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect of AD pathophysiology, representing a significant gap in our current understanding of the disease.

Methods: To investigate the involvement of GlnMgs in AD, we conducted a comprehensive bioinformatic analysis.

View Article and Find Full Text PDF

Introduction: Unsupervised feature learning methods inspired by natural language processing (NLP) models are capable of constructing patient-specific features from longitudinal Electronic Health Records (EHR).

Design: We applied document embedding algorithms to real-world paediatric intensive care (PICU) EHR data to extract patient-specific features from 1853 patients' PICU journeys using 647 unique lab tests and medication events. We evaluated the clinical utility of the patient features via a K-means clustering analysis.

View Article and Find Full Text PDF

Background: With the rising diagnostic rate of gallbladder polypoid lesions (GPLs), differentiating benign cholesterol polyps from gallbladder adenomas with a higher preoperative malignancy risk is crucial. This study aimed to establish a preoperative prediction model capable of accurately distinguishing between gallbladder adenomas and cholesterol polyps using machine learning algorithms.

Materials And Methods: We retrospectively analysed the patients' clinical baseline data, serological indicators, and ultrasound imaging data.

View Article and Find Full Text PDF

Background: Neuroblastoma, a prevalent extracranial solid tumor in pediatric patients, demonstrates significant clinical heterogeneity, ranging from spontaneous regression to aggressive metastatic disease. Despite advances in treatment, high-risk neuroblastoma remains associated with poor survival. SLC1A5, a key glutamine transporter, plays a dual role in promoting tumor growth and immune modulation.

View Article and Find Full Text PDF

Background: Drivers of COVID-19 severity are multifactorial and include multidimensional and potentially interacting factors encompassing viral determinants and host-related factors (i.e., demographics, pre-existing conditions and/or genetics), thus complicating the prediction of clinical outcomes for different severe acute respiratory syndrome coronavirus (SARS-CoV-2) variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!