Polymer/bioceramic composite micro-particles have been used for bone regeneration in order to address weak mechanical properties/bioactivity of polymers and to enable easy filling of irregular bone defects through minimally invasive injection procedure. The purpose of this study was to determine whether injectable apatite-coated atorvastatin (AT) loaded Poly (d,l-lactide-co-glycolide) (PLGA) micro-particles can support osteogenic differentiation of adipose derived mesenchymal stem cells(ADMSCs). Particle preparation conditions (oil-in-water (O/W) emulsion), were carefully adjusted to yield uniform particles of about 20-50 µm in diameter. Taking a solid in oil-in water (S/O/W) emulsion strategy, it became possible to load atorvastatin (10 wt%) in the micro-particles without deformation. The particles were then coated with HAp by incubation in 10X simulated body fluid (SBF). The apatite coating layer was similar to apatite in natural bone, as demonstrated by SEM, XRD, and FTIR analyses. Adipose derived mesenchymal stem cells (ADMSCs), were cultured on the micro-particles and calcium deposition measurement was performed through Alizarin Red assay. Initial cell adhesion did not differ significantly between the samples and the control. The strongest osteogenic differentiation was observed on PLGA-AT-HAp in both the osteogenic and non osteogenic culture media, while PLGA-AT slightly decreased and PLGA-HAp slightly increased osteogenic differentiation of the cells, indicating suitability of PLGA-AT-HAp as an injectable tissue engineering system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2019.05.005DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
16
atorvastatin loaded
8
adipose derived
8
derived mesenchymal
8
mesenchymal stem
8
osteogenic
6
loaded plga
4
plga microspheres
4
microspheres preparation
4
preparation hap
4

Similar Publications

Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear.

View Article and Find Full Text PDF

Bone formation is a complex multi-factor process of bone defect healing. Oxidative stress (OS) is predisposed to induce regulatory cell death (RCD), such as ferroptosis. At present, the antioxidant effects of Crocin on erastin induced oxidative damage were studied.

View Article and Find Full Text PDF

Background: Peri-implantitis is an inflammatory bone disease that seriously affects the health of dental implants. Pyroptosis plays an important role in peri-implantitis and inhibition of pyroptosis may point out a new direction for treating the disease. The long non-coding RNA Negative Regulator of Interferon Response (lncRNA NRIR) is closely related to peri-implantitis and may be involved in the process of pyroptosis.

View Article and Find Full Text PDF

The effect of low energy LED red light on osteogenetic differentiation of periodontal ligament stem cell via the ERK5 signal pathway.

Lasers Med Sci

January 2025

The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.

The purpose of this study was to examine how low-energy LED red light influences the early to middle stage of osteogenic differentiation of periodontal ligament stem cells (PDLSCs) via the ERK5 signaling pathway.  METHODS: PDLSCs were extracted from periodontal membrane tissue using enzymatic digestion. At three time points of 7, 10, and 14 days after irradiation with 5J/cm LED red light, the expression levels of early to middle-stage osteogenic-related genes ALP, Col-1, BSP, and OPN were detected by real-time fluorescence quantitative PCR(qRT-PCR) in both control and osteogenesis experimental groups.

View Article and Find Full Text PDF

Background/purpose: Heat stress is essential for improving the efficacy of mesenchymal stem cell (MSC)-based regeneration medicine. However, it is still unclear whether and how heat stress influences the differentiation of stem cells from apical papilla (SCAPs). This research aimed to explore the potential mechanism of glucose-regulated protein 78 (GRP78) in regulating differentiation under heat stress in SCAPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!