In this study, we designed and synthesized an enhanced strength-toughness alginate composite fiber by using graphene oxide as reinforcing filler for removing heavy metal ions from water media. The as-prepared alginate composite fiber exhibits high affinity to Pb ion, and the maximum adsorption capacity for Pb reached 386.2 mg/g, which is higher than the reported Pb-sorbent. The prepared round-shaped nanofibers have relatively uniform distribution with a diameter of 400 nm, and the interlaced fibers form porous structure that conducive to the rapid transport of heavy metal ions. Adsorption mechanism analysis shows that the alginate composite fibers combine heavy metals mainly by ion exchange and chemical coordination effects. Owing to the excellent mechanical properties of graphene oxide, the alginate composite fibers can be used repeatedly with minimal loss in performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.05.022DOI Listing

Publication Analysis

Top Keywords

alginate composite
20
composite fibers
12
ions water
8
enhanced strength-toughness
8
strength-toughness alginate
8
composite fiber
8
graphene oxide
8
heavy metal
8
metal ions
8
alginate
5

Similar Publications

Characterization of a biocomposite film using coconut jelly powder to improve arrowroot starch and sodium alginate film forming properties.

Int J Biol Macromol

December 2024

Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:

Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.

View Article and Find Full Text PDF

In this study, a novel adsorbent called Ca@SP was developed by immobilizing microalgae protein (Spirulina platensis, SP) in an alginate matrix for enhanced Pb²⁺ removal from aqueous solutions. Synthesized via in situ crosslinking, Ca@SP leverages the synergistic effects of alginate's gel-forming ability and SP's N-rich biomass. Characterization of Ca@SP revealed a green spherical hydrogel with a BET specific surface area of 159.

View Article and Find Full Text PDF

Innovative Ink-Based 3D Hydrogel Bioprinted Formulations for Tissue Engineering Applications.

Gels

December 2024

Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.

Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing.

View Article and Find Full Text PDF

This study investigates 3D extrusion bioinks for cartilage tissue engineering by characterizing the physical properties of 3D-printed scaffolds containing varying alginate and polyvinyl alcohol (PVA) concentrations. We systematically investigated the effects of increasing PVA and alginate concentrations on swelling, degradation, and the elastic modulus of printed hydrogels. Swelling decreased significantly with increased PVA concentrations, while degradation rates rose with higher PVA concentrations, underscoring the role of PVA in modulating hydrogel matrix stability.

View Article and Find Full Text PDF

In sustainable construction and packaging, the development of novel bio-based materials is crucial, driving a re-evaluation of traditional components. Lightweight, biodegradable materials, including xerogels, have great potential in architectural and packaging applications. However, reinforcing these materials to improve their mechanical strength remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!