Directional Charge Transport in Layered Two-Dimensional Triazine-Based Graphitic Carbon Nitride.

Angew Chem Int Ed Engl

Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.

Published: July 2019

Triazine-based graphitic carbon nitride (TGCN) is the most recent addition to the family of graphene-type, two-dimensional, and metal-free materials. Although hailed as a promising low-band-gap semiconductor for electronic applications, so far, only its structure and optical properties have been known. Here, we combine direction-dependent electrical measurements and time-resolved optical spectroscopy to determine the macroscopic conductivity and microscopic charge-carrier mobilities in this layered material "beyond graphene". Electrical conductivity along the basal plane of TGCN is 65 times lower than through the stacked layers, as opposed to graphite. Furthermore, we develop a model for this charge-transport behavior based on observed carrier dynamics and random-walk simulations. Our combined methods provide a path towards intrinsic charge transport in a direction-dependent layered semiconductor for applications in field-effect transistors (FETs) and sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201902314DOI Listing

Publication Analysis

Top Keywords

charge transport
8
triazine-based graphitic
8
graphitic carbon
8
carbon nitride
8
directional charge
4
transport layered
4
layered two-dimensional
4
two-dimensional triazine-based
4
nitride triazine-based
4
nitride tgcn
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!