The photophysics of nitroaromatic compounds is characterized by an ultrafast decay into the triplet manifold and by significant triplet quantum yields. The latter quantity changes drastically depending on the system, as shown for 2-nitronaphthalene, 1-nitronaphthalene, and 2-methyl-1-nitronaphthalene, whose triplet quantum yields have been previously measured to be 0.93 ± 0.15, 0.64 ± 0.12, and 0.33 ± 0.05, respectively (J. Phys. Chem. A, 2013, 117, 14100). In this study, we rationalize the reported trend of the triplet quantum yield on the basis of the different abilities of the excited S state to reach a previously unreported conical intersection with the ground state. This path is in competition with the path leading to the triplet state, which appears to be equally favorable in the three systems. The energy barriers from the S CASPT2//CASSCF minima to a CASPT2 minimum-energy-crossing-point of the S/S conical intersection have been computed to follow the same trend as the triplet quantum yields of the nitroaromatic systems under analysis. The path has also been characterized for nitrobenzene; an energy barrier was obtained that nicely fits the derived model and is in agreement with its triplet quantum yield value (>0.8). The ability of the present model to not only rationalize the experimental data of a single molecule but also to reproduce a trend for four slightly different systems demonstrates its reliability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp00705a | DOI Listing |
Adv Sci (Weinh)
January 2025
Jihua Hengye Electronic Materials Co. Ltd., Foshan, Guangdong, 528200, P. R. China.
B- and N-heterocyclic fluorophores have reveal promising efficiency in blue organic light-emitting diodes (OLEDs) with small full-width-at-half-maximum (FWHM). However, their structural determinants for spectral broadening and operating stability are still needed to be investigated in further. Herein, a novel multi-N-heterocycles Diindolo[3,2,1jk:3',2',1'jk]dicarbazole[1,2-b:4,5-b] (DIDCz) is proposed to manipulate the emission color toward pure blue region by extending π-conjugation of the N-π-N bridge.
View Article and Find Full Text PDFMater Adv
January 2025
Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature ( ), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)).
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue 690-8504, Shimane, Japan.
A series of luminescent bis-cyclometalated iridium complexes with 2,2':6',2″-terpyridine (tpy), [Ir()(tpy)]PF ( = 2-phenylpyridinate (ppy) for ; benzo[h]quinolinate (bzq) for ; 1-phenylisoquinolinate (piq) for ; and 2-phenylbenzothiazolate (pbt) for ), have been synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that the tpy ligands of - are coordinated to the iridium center in a bidentate fashion, and the uncoordinated pendant pyridine rings in the tpy ligands of - form intramolecular π-π stacking interactions with a phenyl moiety of ligands. In addition, the pendant pyridine ring in the tpy ligand of forms an intramolecular hydrogen bonding interaction, unlike in -.
View Article and Find Full Text PDFChem Asian J
December 2024
Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, A.P 517619, India.
Visible-light absorbing metal-free organic dyes are of increasing demand for various optoelectronic applications because of their great structure-function tunability through chemical means. Several dyes also show huge potential in triplet photosensitization, generating reactive singlet oxygen. Understanding the structure-property relationships of many well-known fluorescein dyes is of paramount importance in designing next-generation energy efficient dyes, which is currently limited.
View Article and Find Full Text PDFACS Mater Lett
January 2025
Department of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom.
Quantum technologies using electron spins have the advantage of employing chemical qubit media with tunable properties. The principal objective of material engineers is to enhance photoexcited spin yields and quantum spin relaxation. In this study, we demonstrate a facile synthetic approach to control spin properties in charge-transfer cocrystals consisting of 1,2,4,5-tetracyanobenzene (TCNB) and acetylated anthracene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!