A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heparosan as a potential alternative to hyaluronic acid for the design of biopolymer-based nanovectors for anticancer therapy. | LitMetric

Glycosaminoglycans (GAGs) are important components of the extracellular matrix that have attracted great interest for drug delivery and pharmaceutical applications due to their diverse biological functions. Among GAGs, heparosan (Hep), a biosynthetic precursor of heparin, has recently emerged as a promising building block for the design of nanoparticles with stealth properties. Though this non-sulfated polysaccharide has a chemical structure very close to that of hyaluronic acid (HA), it distinguishes from HA in that it is biologically inert in the extracellular spaces in the body. In this study, we designed Hep- and HA-based nanogels (NGs) that differ only in the chemical nature of the hydrophilic shell. The nanogels were prepared in a very straightforward way from Hep and HA modified with a thermoresponsive copolymer properly designed to induce self-assembly below room temperature. This versatile synthetic approach also enabled further shell-crosslinking allowing an increase in the colloidal stability. After careful characterization of the un-crosslinked and crosslinked Hep and HA NGs in terms of size (Z-average diameters of un-crosslinked and crosslinked NGs ∼110 and 150 nm) and morphology, they were injected intravenously into tumor-bearing mice for biodistribution experiments. Interestingly, these show that the liver uptake of Hep nanogels is remarkably reduced and tumor accumulation significantly improved as compared to HA nanogels (intensity ratios of tumor-to-liver of 2.2 and 1.4 for the un-crosslinked and crosslinked Hep NGs versus 0.11 for the un-crosslinked and crosslinked HA ones). These results highlight the key role played by the shell-forming GAGs on the in vivo fate of nanogels, which correlates with the specific biological properties of Hep and HA.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9bm00443bDOI Listing

Publication Analysis

Top Keywords

un-crosslinked crosslinked
16
hyaluronic acid
8
crosslinked hep
8
hep ngs
8
hep
6
nanogels
5
heparosan potential
4
potential alternative
4
alternative hyaluronic
4
acid design
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!