A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Updated Emission Factors from Diffuse Combustion Sources in Sub-Saharan Africa and Their Effect on Regional Emission Estimates. | LitMetric

Diffuse emission sources outside of kitchen areas are poorly understood, and measurements of their emission factors (EFs) are sparse for regions of sub-Saharan Africa. Thirty-one in-field emission measurements were taken in northern Ghana from combustion sources common to rural regions worldwide. Sources sampled included commercial cooking, trash burning, kerosene lanterns, and diesel generators. EFs were calculated for carbon monoxide (CO), carbon dioxide (CO), as well as carbonaceous particulate matter, specifically elemental carbon (EC) and organic carbon (OC). EC and OC emissions were measured from kerosene lighting events (EF = 25.1 g/kg-fuel SD = 25.7, EF = 9.5 g/kg-fuel SD = 10.0). OC emissions from trash burning events were large and highly variable (EF = 38.9 g/kg-fuel SD = 30.5). Combining our results with other recent in-field emission factors for rural Ghana, we explored updated emission estimates for Ghana using a region specific emissions inventory. Large differences are calculated for all updated source emissions, showing a 96% increase in OC and 78% decrease in EC compared to prior estimates for Ghana's emissions. Differences for carbon monoxide were small when averaged across all updated source types (-1%), though the household wood use and trash burning categories individually show large differences.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.8b06155DOI Listing

Publication Analysis

Top Keywords

emission factors
12
trash burning
12
updated emission
8
combustion sources
8
sub-saharan africa
8
emission estimates
8
in-field emission
8
carbon monoxide
8
large differences
8
updated source
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!