AI Article Synopsis

Article Abstract

The challenge of bacterial infection increases the risk of mortality and morbidity in acute and chronic wound healing. Silver nanoparticles (Ag NPs) are a promising new version of conventional antibacterial nanosystem to fight against the bacterial resistance in concern of the drug discovery void. However, there are several challenges in controlling the size and colloidal stability of Ag NPs, which readily aggregate or coalesce in both solid and aqueous state. In this study, a template-guided synthesis of ultrafine Ag NPs of around 2 nm using water-soluble and biocompatible γ-cyclodextrin metal-organic frameworks (CD-MOFs) is reported. The CD-MOF based synthetic strategy integrates AgNO reduction and Ag NPs immobilization in one pot achieving dual functions of reduced particle size and enhanced stability. Meanwhile, the synthesized Ag NPs are easily dispersible in aqueous media and exhibit effective bacterial inhibition. The surface modification of cross-linked CD-MOF particles with GRGDS peptide boosts the hemostatic effect that further enhances wound healing in synergy with the antibacterial effect. Hence, the strategy of ultrafine Ag NPs synthesis and immobilization in CD-MOFs together with GRGDS modification holds promising potential for the rational design of effective wound healing devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201901065DOI Listing

Publication Analysis

Top Keywords

wound healing
16
silver nanoparticles
8
metal-organic frameworks
8
ultrafine nps
8
nps
6
ultrafine silver
4
nanoparticles embedded
4
embedded cyclodextrin
4
cyclodextrin metal-organic
4
frameworks grgds
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!