Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: The estimation of the time since death, or post-mortem interval (PMI), still remains a main conundrum in forensic science. Several approaches have been so far proposed from either a qualitative or a quantitative point of view, but they still lack reliability and robustness. Recently, metabolomics has shown to be a potential tool to investigate the time-related post-mortem metabolite modifications in animal models.
Objectives: Here we propose, for the first time, the use of a H NMR metabolomic approach for the estimation of PMI from aqueous humour (AH) in an ovine model.
Methods: AH samples were collected at different times after death (from 118 to 1429 min). H NMR experiments were performed and spectral data analysed by multivariate statistical tools.
Results: A multivariate calibration model was built to estimate PMI on the basis of the metabolite content of the samples. The model was validated with an independent test set, obtaining a prediction error of 59 min for PMI < 500 min, 104 min for PMI from 500 to 1000 min, and 118 min for PMI > 1000 min. Moreover, the metabolomic approach suggested a picture of the mechanisms underlying the post-mortem biological modifications, highlighting the role played by taurine, choline, and succinate.
Conclusion: The time-related modifications of the H NMR AH metabolomic profile seem to be encouraging in addressing the issue of a reproducible and robust model to be employed for the estimation of the time since death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11306-019-1533-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!