Estrogenic chemicals are widespread environmental contaminants associated with diverse health and ecological effects. During early vertebrate development, estrogen receptor signaling is critical for many different physiologic responses, including nervous system function. Recently, host-associated microbiota have been shown to influence neurodevelopment. Here, we hypothesized that microbiota may biotransform exogenous 17-βestradiol (E2) and modify E2 effects on swimming behavior. Colonized zebrafish were continuously exposed to non-teratogenic E2 concentrations from 1 to 10 days post-fertilization (dpf). Changes in microbial composition and predicted metagenomic function were evaluated. Locomotor activity was assessed in colonized and axenic (microbe-free) zebrafish exposed to E2 using a standard light/dark behavioral assay. Zebrafish tissue was collected for chemistry analyses. While E2 exposure did not alter microbial composition or putative function, colonized E2-exposed larvae showed reduced locomotor activity in the light, in contrast to axenic E2-exposed larvae, which exhibited normal behavior. Measured E2 concentrations were significantly higher in axenic relative to colonized zebrafish. Integrated peak area for putative sulfonated and glucuronidated E2 metabolites showed a similar trend. These data demonstrate that E2 locomotor effects in the light phase are dependent on the presence of microbiota and suggest that microbiota influence chemical E2 toxicokinetics. More broadly, this work supports the concept that microbial colonization status may influence chemical toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506524PMC
http://dx.doi.org/10.1038/s41598-019-43346-9DOI Listing

Publication Analysis

Top Keywords

microbiota influence
8
colonized zebrafish
8
microbial composition
8
locomotor activity
8
e2-exposed larvae
8
influence chemical
8
microbiota
5
microbiota alter
4
alter metabolism
4
metabolism mediate
4

Similar Publications

Gut Microbiota Alterations in Patients With Kawasaki Disease.

Arterioscler Thromb Vasc Biol

January 2025

Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's, Cedars-Sinai Medical Center, Los Angeles, CA.(P.K.J., M.A., M.N.R.).

The intestinal microbiota influences many host biological processes, including metabolism, intestinal barrier functions, and immune responses in the gut and distant organs. Alterations in its composition have been associated with the development of inflammatory disorders and cardiovascular diseases, including Kawasaki disease (KD). KD is an acute pediatric vasculitis of unknown etiology and the leading cause of acquired heart disease in children in the United States.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a common progressive degenerative disease. Gut microbiota (GM) and their metabolites have been closely associated with the onset, progression, and pathology of OA. GM and their metabolites may influence the cartilage directly, or indirectly by affecting the gut, the immune system, and the endocrine system.

View Article and Find Full Text PDF

Progress in the Study of Intratumoral Microorganisms in Hepatocellular Carcinoma.

J Hepatocell Carcinoma

January 2025

Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China.

The intratumoral microbiota, an integral part of liver tumors, has garnered significant attention from researchers due to its role in tumor development regulation and impact on cancer treatment. Intratumoral microorganism not only influences tumorigenesis and progression, but also serves as potential biomarkers and targets for tumor therapy. Targeted manipulation of these microorganisms holds great promise for personalized liver cancer treatment.

View Article and Find Full Text PDF

Long-term effects of combining anaerobic digestate with other organic waste products on soil microbial communities.

Front Microbiol

January 2025

Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France.

Introduction: Agriculture is undergoing an agroecological transition characterized by adopting new practices to reduce chemical fertilizer inputs. In this context, digestates are emerging as sustainable substitutes for mineral fertilizers. However, large-scale application of digestates in agricultural fields requires rigorous studies to evaluate their long-term effects on soil microbial communities, which are crucial for ecosystem functioning and resilience.

View Article and Find Full Text PDF

Introduction: Polycystic ovary syndrome (PCOS) is a common gynecological condition affecting individuals of reproductive age and is linked to the gut microbiome. This study aimed to identify the hotspots and research trends within the domain of the gut microbiome in PCOS through bibliometric analysis.

Methods: Utilizing bibliometric techniques, we examined the literature on the gut microbiome in PCOS from the Web of Science Core Collection spanning the period from 2012 to 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!