Arabidopsis () floral meristems terminate after the carpel primordia arise. This is achieved through the temporal repression of (), which is essential for stem cell maintenance. At floral stage 6, is repressed by KNUCKLES (KNU), a repressor directly activated by AGAMOUS. KNU was suggested to repress through histone deacetylation; however, how the changes in the chromatin state of are initiated and maintained to terminate the floral meristem remains elusive. Here, we show that KNU integrates initial transcriptional repression with polycomb-mediated stable silencing of After KNU is induced, it binds to the promoter and causes eviction of SPLAYED, which is a known activator of and can oppose polycomb repression. KNU also physically interacts with FERTILIZATION-INDEPENDENT ENDOSPERM, a key polycomb repressive complex2 component, and mediates the subsequent deposition of the repressive histone H3 lysine 27 trimethylation for stable silencing of This multi-step silencing of leads to the termination of floral stem cells, ensuring proper carpel development. Thus, our work describes a detailed mechanism for heritable floral stem cell termination in a precise spatiotemporal manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635863 | PMC |
http://dx.doi.org/10.1105/tpc.18.00450 | DOI Listing |
Genetics
January 2025
Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.
The Drosophila TRIM-NHL RNA-binding protein (RBP), MEI-P26, has previously been shown to suppress tumor formation in the germline. Here we show that, in the Drosophila larval central brain, cell-type specific expression of MEI-P26 plays a vital role in regulating neural development. MEI-P26 and another TRIM-NHL RBP, Brain tumor (BRAT), have distinct expression patterns in Type I neuroblast (NB) lineages: While both proteins are expressed in NBs, BRAT is expressed in ganglion mother cells (GMCs) but not neurons whereas MEI-P26 is expressed in neurons but not GMCs.
View Article and Find Full Text PDFPest Manag Sci
January 2025
College of Agronomy and Biotechnology, Southwest University, Chongqing, China.
Background: The entomopathogenic fungus Beauveria bassiana has been widely used for pest biocontrol with conidia serving as the main active agents. Conidial yield and quality are two important characteristics in fungal conidia development, however, the regulatory mechanisms that orchestrate conidial formation and development are not well understood.
Results: In this study, we identified a ZnCys transcription factor BbCDR1 that inhibits conidial production while promoting conidial maturation.
Appl Environ Microbiol
January 2025
Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
Unlabelled: is a ubiquitous environmental pathogen. Despite its remarkable adaptability, little is known about the mechanisms of stress resistance in this bacterium. Here, in a screen for iron-susceptible transposon mutants, we identified a cytochrome that protects against multiple stresses.
View Article and Find Full Text PDFSynth Syst Biotechnol
November 2024
Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, 150030, China.
Guvermectin, a purine nucleoside natural product produced by the genus S, has recently been registered as a new biopesticide to boost rice yield. Despite its economic and agricultural significance, the regulatory mechanisms of guvermectin biosynthesis remain essentially unknown, hindering industrial production and widespread agricultural application. Here, we examined the roles of two LacI family regulators, and , located within and adjacent to the guvermectin biosynthesis cluster, respectively, in guvermectin production in NEAU6.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Republic of Korea.
Plants are susceptible to infection by various pathogens with high epidemic potential. pv () causes bacterial blight in rice, one of the most significant diseases in both temperate and tropical regions. In this study, we report the identification and characterization of , a sucrose-inducible transcription factor, that plays a role in the plant defense responses following infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!