Inhibition of histone deacetylase 6 (HDAC6) was shown to support axon growth on the nonpermissive substrates myelin-associated glycoprotein (MAG) and chondroitin sulfate proteoglycans (CSPGs). Though HDAC6 deacetylates α-tubulin, we find that another HDAC6 substrate contributes to this axon growth failure. HDAC6 is known to impact transport of mitochondria, and we show that mitochondria accumulate in distal axons after HDAC6 inhibition. Miro and Milton proteins link mitochondria to motor proteins for axon transport. Exposing neurons to MAG and CSPGs decreases acetylation of Miro1 on Lysine 105 (K105) and decreases axonal mitochondrial transport. HDAC6 inhibition increases acetylated Miro1 in axons, and acetyl-mimetic Miro1 K105Q prevents CSPG-dependent decreases in mitochondrial transport and axon growth. MAG- and CSPG-dependent deacetylation of Miro1 requires RhoA/ROCK activation and downstream intracellular Ca increase, and Miro1 K105Q prevents the decrease in axonal mitochondria seen with activated RhoA and elevated Ca These data point to HDAC6-dependent deacetylation of Miro1 as a mediator of axon growth inhibition through decreased mitochondrial transport.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6548128 | PMC |
http://dx.doi.org/10.1083/jcb.201702187 | DOI Listing |
bioRxiv
January 2025
Department of Biology, University of Iowa, Iowa City, IA 52242 USA.
Neurotrophic factors are critical for establishing functional connectivity in the nervous system and sustaining neuronal survival through adulthood. As the first neurotrophic factor purified, nerve growth factor (NGF) is extensively studied for its prolific role in axon outgrowth, pruning, and survival. Applying NGF to diseased neuronal tissue is an exciting therapeutic option and understanding how NGF regulates local axon susceptibility to pathological degeneration is critical for exploiting its full potential.
View Article and Find Full Text PDFJACC Heart Fail
January 2025
Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic. Electronic address:
Background: Growth differentiation factor (GDF)-15 is a pleiotropic cytokine that is associated with appetite-suppressing effects and weight loss in patients with malignancy.
Objectives: This study aims to investigate the relationships between GDF-15 levels, anorexia, cachexia, and clinical outcomes in patients with advanced heart failure with reduced ejection fraction (HFrEF).
Methods: In this observational, retrospective analysis, a total of 344 patients with advanced HFrEF (age 58 ± 10 years, 85% male, 67% NYHA functional class III), underwent clinical and echocardiographic examination, body composition evaluation by skinfolds and dual-energy x-ray absorptiometry, circulating metabolite assessment, Minnesota Living with Heart Failure Questionnaire, and right heart catheterization.
Int J Mol Sci
December 2024
Department of Orthopedic Surgery, E-Da Hospital, I-Shou University, Kaohsiung City 824, Taiwan.
Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.
View Article and Find Full Text PDFMolecules
December 2024
Chair for Integrated Systems and Photonics, Department of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany.
Biological neural circuits are based on the interplay of excitatory and inhibitory events to achieve functionality. Axons form long-range information highways in neural circuits. Axon pruning, i.
View Article and Find Full Text PDFCells
January 2025
Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!