Background: Little is known about how human disease vectors will modify their life history patterns and survival capacity as a result of climate change. One case is that of Chagas disease, which has triatomine bugs and Trypanosoma cruzi as vectors and parasite, respectively. This work aimed to determine: (i) the activity of the prophenoloxidase system (prophenoloxidase and phenoloxidase activity, two indicators of immune ability) in three intestine regions (anterior midgut, posterior midgutand rectum) of the triatomine bug Meccus pallidipennis under three temperature conditions (20 °C, 30 °C and 34 °C) against two T. cruzi strains [ITRI/MX/14/CHIL (Chilpancingo) and ITRI/MX/12/MOR (Morelos)], and (ii) whether vector survival varies under these three temperatures after infection by these T. cruzi strains.
Results: Our results indicate that prophenoloxidase activity was lower at higher temperatures, that the level of prophenoloxidase activity elicited by each strain was different (higher in Chilpancingo than in Morelos strains), and that prophenoloxidase activity was more intense in the anterior midgut than in the posterior midgut or rectum. Survival rates were lower in insects maintained at higher temperatures and infected by Chilpancingo strains.
Conclusions: These results indicate that climate change could lead to lower prophenoloxidase activity and survival rates in triatomines when infected with different T. cruzi strains, which could reduce the vector capacity of M. pallidipennis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507061 | PMC |
http://dx.doi.org/10.1186/s13071-019-3477-9 | DOI Listing |
Heliyon
January 2025
Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh.
The present study was conducted to evaluate the efficacy of extract against the white spot syndrome virus (WSSV) in black tiger shrimp () following oral administration . The methanol extract derived from the extraction was sprayed into feed at a concentration of 0.0 %, 0.
View Article and Find Full Text PDFInsect Biochem Mol Biol
January 2025
Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA. Electronic address:
Insect prophenoloxidases (proPO) are activated during immune responses by a proPO activating protease (PAP) in the presence of a high molecular weight cofactor assembled from serine protease homologs (SPH) that lack proteolytic activity. PAPs and the SPHs have a similar architecture, with an amino-terminal clip domain and a carboxyl-terminal protease domain. The SPHs belong to CLIPA subfamily of SP-related proteins.
View Article and Find Full Text PDFCells
January 2025
Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary.
Parasitoid elimination in involves special hemocytes, called lamellocytes, which encapsulate the eggs or larvae of the parasitoid wasps. The capsules are melanized, and metabolites of the melanization reaction may play a potential role in parasitoid killing. We have observed a variation in the melanization capacity of different, commonly used strains, such as Canton-S, Oregon-R, and BL5905, BL6326.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Republic of Korea.
Endocrine-disrupting chemicals (EDCs) significantly damage biological systems related to reproductive, neurological, and metabolic functions. Approximately 1000 chemicals are known to possess endocrine-acting properties, including bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP). This study primarily focuses on the potential effects of EDCs on the transcriptional levels of innate immune prophenoloxidase (proPO) system-related genes under oxidative stress in the gonads and stomach of the mud crab , an indicator species for assessing coastal benthic environments, when exposed to 1 µg L, 10 µg L, and 30 µg L BPA or DEHP.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
Plant natural products are crucial in defending against herbivorous insects and are widely used in pest control, yet their mechanisms remain complex and insufficiently studied. This study employed a reverse strategy to investigate the mechanism of camptothecin (CPT), a botanical pesticide. By using a CPT-based chemical probe coupled with proteomic analysis, immune-related proteins, including those involved in prophenoloxidase (PPO) activation and antimicrobial peptide (AMP) synthesis, were identified in the Asian corn borer, .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!