Background: c-Myc plays an important role in cell proliferation, cell growth and in differentiation, making it a key regulator for carcinogenesis and pluripotency. Tight control of c-myc turnover is required by ubiquitin-mediated degradation. This is achieved in the system by two F-box proteins Skp2 and FBXW7.

Results: Dynamic modelling technique was used to build two exclusive models for phosphorylation dependent degradation of Myc by FBXW7 (Model 1) and phosphorylation independent degradation by Skp2 (Model 2). Sensitivity analysis performed on these two models revealed that these models were corroborating experimental studies. It was also seen that Model 1 was more robust and perhaps more efficient in degrading c-Myc. These results questioned the existence of the two models in the system and to answer the question a combined model was hypothesised which had a decision making switch. The combined model had both Skp2 and FBXW7 mediated degradation where again the latter played a more important role. This model was able to achieve the lowest levels of ubiquitylated Myc and therefore functioned most efficiently in degradation of Myc.

Conclusion: In this report, c-Myc degradation by two F-box proteins was mathematically evaluated based on the importance of c-Myc turnover. The study was performed in a homeostatic system and therefore, prompts the exploration of c-Myc degradation in cancer state and in pluripotent state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6505206PMC
http://dx.doi.org/10.1186/s12859-019-2846-xDOI Listing

Publication Analysis

Top Keywords

c-myc degradation
12
phosphorylation dependent
8
degradation
8
c-myc turnover
8
f-box proteins
8
combined model
8
c-myc
7
model
6
silico modeling
4
modeling phosphorylation
4

Similar Publications

Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.

View Article and Find Full Text PDF

Background: Adenoid cystic carcinoma (ACC) is a rare glandular malignancy, commonly originating in salivary glands of the head and neck. Given its protracted growth, ACC is usually diagnosed in advanced stage. Treatment of ACC is limited to surgery and/or adjuvant radiotherapy, which often fails to prevent disease recurrence, and no FDA-approved targeted therapies are currently available.

View Article and Find Full Text PDF

Purpose: Epstein-Barr virus (EBV)-positive Burkitt lymphoma (BL) affects children in sub-Saharan Africa, but diagnosis via tissue biopsy is challenging. We explored a liquid biopsy approach using targeted next-generation sequencing to detect the -immunoglobulin (-Ig) translocation and EBV DNA, assessing its potential for minimally invasive BL diagnosis.

Materials And Methods: The panel included targets for the characteristic -Ig translocation, mutations in intron 1 of , mutations in exon 2 of , and three EBV genes: EBV-encoded RNA (EBER)1, EBER2, and EBV nuclear antigen 2.

View Article and Find Full Text PDF

Doublecortin-like kinase 1 (DCLK1) has been revealed to be involved in modulating cancer stemness and tumor progression, but its role in prostate cancer (PCa) remains obscure. Castration-resistant and metastatic PCa exhibit aggressive behaviors, and current therapeutic approaches have shown limited beneficial effects on the overall survival rate of patients with advanced PCa. This study aimed to investigate the biological role and potential molecular mechanism of DCLK1 in the progression of PCa.

View Article and Find Full Text PDF

Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and is the second leading cause of cancer mortality. FAM49B, a member of the FAM49 gene family, is a recently identified, evolutionarily conserved gene. Emerging studies indicate that FAM49B plays a role in various cancers, though its specific mechanism in CRC remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!