In this research, the enhancement in electrochemical performance of pyrolyzed carbon microelectrodes by surface modification is investigated. For the proposed microfabrication process, pyrolyzed carbon microelectrodes with multi-walled carbon nanotubes (MWCNTs) on their surface are obtained by developing GM-1060 photoresist in mixture of propylene glycol methyl ether acetate (PGMEA) and CNTs, and following pyrolysis of a micropatterned photoresist. Polyvinyl alcohol (PVA)/HSO electrolyte (1 M) was applied to assemble this carbon/CNT microelectrode-based all-solid-state microsupercapacitor (carbon/CNT-MSC). The carbon/CNT-MSC shows a higher electrochemical performance compared with that of pyrolyzed carbon microelectrode-based MSC (carbon-MSC). The specific areal and volumetric capacitances of carbon/CNT-MSC (4.80 mF/cm and 32.0 F/cm) are higher than those of carbon-MSC (3.52 mF/cm and 23.4 F/cm) at the scan rate of 10 mV/s. In addition, higher energy density and power density of carbon/CNT-MSC (2.85 mWh/cm and 1.98 W/cm) than those of carbon-MSC (2.08 mWh/cm and 1.41 W/cm) were also achieved. This facile surface modification and optimization are potentially promising, being highly compatible with modern microfabrication technologies and allowing integration of highly electrically conductive CNTs into pyrolyzed carbon to assemble MSCs with improved electrochemical performance. Moreover, this method can be potentially applied to other high-performance micro/nanostructures and microdevices/systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563127 | PMC |
http://dx.doi.org/10.3390/mi10050307 | DOI Listing |
J Environ Manage
March 2025
National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China. Electronic address:
Converting biomass waste into hydrogen energy through gasification is a crucial pathway for producing "green hydrogen". In a fixed bed reactor, a representative biomass waste, rice straw (RS), was pyrolyzed at N, HO, CO, and O atmospheres to generate hydrogen. Solid C-13 Nuclear Magnetic Resonance Spectroscopy (C-NMR) and Fourier Transform infrared spectroscopy (FTIR) were employed to elucidate the carbon structure and functional groups of the samples.
View Article and Find Full Text PDFDalton Trans
March 2025
National energy key laboratory for new hydrogen-ammonia energy technologies, Foshan Xianhu Laboratory, Foshan 528200, China.
High-performance Fe-based nitrogen-doped carbon oxygen reduction catalysts have been widely reported, but the Fenton reaction faced by such catalysts has hindered their practical application in fuel cells. The development of inexpensive, effective, and durable non-Fe nitrogen-doped carbon electrocatalysts is important for advancing fuel cell technology. In this work, we have introduced a molecular coordination chemistry method to synthesize a Cu- and P-co-doped nitrogen-doped hierarchical carbon (Cu-P-N-C) oxygen reduction reaction (ORR) electrocatalyst by pyrolyzing a mixture of phytate and melamine.
View Article and Find Full Text PDFChemSusChem
March 2025
Guangxi University, Daxuelu 100#, Nanning, CHINA.
Developing metal-free catalysts is critical to addressing the issues of susceptibility to poisoning and deficient durability in the electrocatalysis of metal-based materials for CO2 reduction reaction (CO2RR). Herein, N-doped carbon nanoparticles (NCs) with a specific ratio of graphitic/pyrrolic N, high specific surface area, and abundant nanopores are synthesized by pyrolyzing a Cu and Zn co-coordinated polymer with bis(imino)-pyridine ligands. Results demonstrate that precise co-incorporation of Cu and Zn in the precursor effectively modulates the N doping species and ratios of NCs, as well as the pore structure, resulting in significantly distinct CO2RR behaviors.
View Article and Find Full Text PDFJ Environ Manage
March 2025
National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China; Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China; CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China. Electronic address:
In view of the food waste (FW) as well as its digestate are both the organic sources of municipal solid waste, this study explored the anaerobic fermentation (AF) and following pyrolysis carbonization to co-disposal the two wastes for carbon resource recovery, including short chain organic acid (SCOAs), pyrolysis gas and biochar. Results indicated that both the rate and yield of SCOAs production both increase with the rising ratio of biogas sludge (BS) to FW, enhancing the soluble carbon recovery. The highest SCOAs production of 474.
View Article and Find Full Text PDFInt J Environ Health Res
March 2025
Plastics Engineering Department, Central Institute of Petrochemical Engineering & Technology, Lucknow, India.
Plastic is a novel material, but the pollution associated with improper disposal of plastic has been a global concern. Plastic waste accumulated in our ecosystem can be minimized effectively by thermal recycling to obtain valuable end products. The char obtained after the pyrolysis of waste plastics having high carbon content has tremendous potential to be developed as activated carbon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!