Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spaceborne multistatic synthetic aperture radar (SAR) tomography (SMS-TomoSAR) systems take full advantage of the flexible configuration of multistatic SAR in the space, time, phase, and frequency dimensions, and simultaneously achieve high-precision height resolution and low-deformation measurement of three-dimensional ground scenes. SMS-TomoSAR currently poses a series of key issues to solve, such as baseline optimization, spatial transmission error estimation and compensation, and the choice of imaging algorithm, which directly affects the performance of height-dimensional imaging and surface deformation measurement. This paper explores the impact of baseline distribution on height-dimensional imaging performance for the baseline optimization issue, and proposes a feasible baseline optimization method. Firstly, the multi-base multi-pass baselines of an SMS-TomoSAR system are considered equivalent to a group of multi-pass baselines from monostatic SAR. Secondly, we establish the equivalent baselines as a symmetric-geometric model to characterize the non-uniform characteristic of baseline distribution. Through experimental simulation and model analysis, an approximately uniform baseline distribution is shown to have better SMS-TomoSAR imaging performance in the height direction. Further, a baseline design method under uniform-perturbation sampling with Gaussian distribution error is proposed. Finally, the imaging performance of different levels of perturbation is compared, and the maximum baseline perturbation allowed by the system is given.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540355 | PMC |
http://dx.doi.org/10.3390/s19092106 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!