Cultured epithelial autografts (CEAs) represent a life-saving surgical technique for full-thickness skin burns covering more than 60% total body surface area. However, CEAs present numerous drawbacks leading to heavy cosmetic and functional sequelae. In our previous study, we showed that human plasma-based fibrin matrices (hPBM) could improve the reparative potential of CEAs. Therefore, in the present work, we sought to investigate the role of hPBM compared with fibrin from purified fibrinogen (FPF) or plastic support on epidermal substitute formation and engraftment. The use of hPBM for epidermal substitute culture improved keratinocyte migration, proliferation, and epidermal substitute organization to a better extent than FPF in vitro. Both fibrin matrices favored greater dermal-epidermal junction protein deposition and prevented their degradation. Keratinocyte differentiation was also decreased using both fibrin matrices. Basement membrane protein deposition was mainly influenced by matrix whereas growth factors released from fibrin especially by hPBM were shown to enhance in vitro keratinocyte migration, proliferation, and epidermal substitute organization. Ultimately, epidermal substitutes grown on hPBM displayed better engraftment rates than those cultured on FPF or on plastic support in a NOD-SCID model of acute wound with the formation of a functional dermal-epidermal junction. Together, these results show the positive impact of fibrin matrices and their released growth factor on epidermal substitute phenotype and grafting efficiency. Fibrin matrices, and especially hPBM, may therefore be of interest to favor the treatment of full-thickness burn patients.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.2879DOI Listing

Publication Analysis

Top Keywords

fibrin matrices
24
epidermal substitute
24
matrices released
8
substitute phenotype
8
matrices hpbm
8
fpf plastic
8
plastic support
8
keratinocyte migration
8
migration proliferation
8
proliferation epidermal
8

Similar Publications

Emerging in vivo evidence suggests that repeated muscle contraction, or exercise, impacts peripheral nerves. However, the difficulty of isolating the muscle-specific impact on motor neurons in vivo, as well as the inability to decouple the biochemical and mechanical impacts of muscle contraction in this setting, motivates investigating this phenomenon in vitro. This study demonstrates that tuning the mechanical properties of fibrin enables longitudinal culture of highly contractile skeletal muscle monolayers, enabling functional characterization of and long-term secretome harvesting from exercised tissues.

View Article and Find Full Text PDF

Perfluorocarbon (PFC) droplets represent a novel class of phase-shift contrast agent with promise in applications in biomedical and bioengineering fields. PFC droplets undergo a fast liquid-gas transition upon exposure to acoustic or optical triggering, offering a potential adaptable and versatile tool as contrast agent in diagnostic imaging and localized drug delivery vehicles in therapeutics systems. In this paper, we utilize advanced imaging techniques to investigate ultra-high-speed inertial dynamics and rectified quasi-static (low-speed) diffusion evolution of optically induced PFC droplet vaporization within three different hydrogels, each of different concentrations, examining effects such as droplet size and PFC core on bubble dynamics and material viscoelastic properties.

View Article and Find Full Text PDF

Cell-laden hydrogel constructs suspended between pillars are powerful tools for modeling tissue structure and physiology, though current fabrication techniques often limit them to uniform compositions. In contrast, tissues are complex in nature with spatial arrangements of cell types and extracellular matrices. Thus, we present Suspended Tissue Open Microfluidic Patterning (STOMP), which utilizes a removable, open microfluidic patterning channel to pattern multiple spatial regions across a single suspended tissue.

View Article and Find Full Text PDF

Gingival recessions are vastly prevalent among the general population. With regards to their treatment, recent advancements in periodontal and microsurgical procedures, focusing on minimal invasiveness and patient-centered therapies, have propelled a shift in their contemporary treatment, highlighting the field of biologics and bioactive mediators. Among different classes and types of biologics, autologous platelet concentrates (APCs), also referred to as autologous blood-derived products, are commonly used and preferred among many clinicians.

View Article and Find Full Text PDF

A highly sensitive and specific fluorescent probe for thrombin detection and high-throughput screening of thrombin inhibitors in complex matrices.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China. Electronic address:

Thrombin plays a critical role in hemostasis and hemolysis, and is a significant biomarker for blood-related diseases. Detection and inhibitors screening of thrombin are essential in medical research. In this study, we developed a fluorescent sensor based on the interaction between quantum dots (QDs) and fibrinogen (Fib) for thrombin detection and its inhibitors screening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!