Microparticles for controlled growth differentiation factor 6 delivery to direct adipose stem cell-based nucleus pulposus regeneration.

J Tissue Eng Regen Med

Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.

Published: August 2019

Currently, there is no effective long-term treatment for intervertebral disc (IVD) degeneration, making it an attractive candidate for regenerative therapies. Hydrogel delivery of adipose stem cells (ASCs) in combination with controlled release of bioactive molecules is a promising approach to halt IVD degeneration and promote regeneration. Growth differentiation factor 6 (GDF6) can induce ASC differentiation into anabolic nucleus pulposus (NP) cells and hence holds promise for IVD regeneration. Here, we optimised design of novel poly(DL-lactic acid-co-glycolic acid) (PLGA)-polyethylene glycol-PLGA microparticles to control GDF6 delivery and investigated effect of released GDF6 on human ASCs differentiation to NP cells. Recombinant human (rh)GDF6 was loaded into microparticles and total protein and rhGDF6 release assessed. The effect of microparticle loading density on distribution and gel formation was investigated through scanning electron microscopy. ASC differentiation to NP cells was examined after 14 days in hydrogel culture by quantitative polymerase chain reaction, histological, and immunohistochemical staining in normoxic and IVD-like hypoxic conditions. RhGDF6 microparticles were distributed throughout gels without disrupting gelation and controlled rhGDF6 release over 14 days. Released GDF6 significantly induced NP differentiation of ASCs, with expression comparable with or exceeding media supplemented rhGDF6. Microparticle-delivered rhGDF6 also up-regulated sulphated glycosaminoglycan and aggrecan secretion in comparison with controls. In hypoxia, microparticle-delivered rhGDF6 continued to effectively induce NP gene expression and aggrecan production. This study demonstrates the effective encapsulation and controlled delivery of rhGDF6, which maintained its activity and induced ASC differentiation to NP cells and synthesis of an NP-like matrix suggesting suitability of microparticles for controlled growth factor release in regenerative strategies for treatment of IVD degeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771973PMC
http://dx.doi.org/10.1002/term.2882DOI Listing

Publication Analysis

Top Keywords

ivd degeneration
12
asc differentiation
12
differentiation cells
12
microparticles controlled
8
controlled growth
8
growth differentiation
8
differentiation factor
8
adipose stem
8
nucleus pulposus
8
released gdf6
8

Similar Publications

In healthy intervertebral discs (IVDs), nerves and blood vessels are present only in the outer annulus fibrosus, while in degenerative IVDs, a large amount of nerve and blood vessel tissue grows inward. Evidence supports that neurogenic inflammation produced by neuropeptides such as substance P and calcitonin gene related peptide released by the nociceptive nerve fibers innervating the IVDs plays a crucial role in the process of IVD degeneration. Recently, non-neuronal cells, including IVD cells and infiltrating immune cells, have emerged as important players in neurogenic inflammation.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IDD) is a leading cause of low back pain, often linked to inflammation and pyroptosis in nucleus pulposus (NP) cells. The role of Periostin (POSTN) in IDD remains unclear.

Objective: This study aims to investigate the influence of POSTN on pyroptosis and NLRP3 inflammasome activation in NP cells during IDD.

View Article and Find Full Text PDF

Objective: Macrophages play a crucial role in various physiological processes. In intervertebral disc degeneration (IDD), macrophage infiltration has been observed in human intervertebral disc (IVD) specimens, but how macrophages influence IDD remains unclear.

Methods: According to the single-cell transcriptome expression profiles from GSE165722, we verified the infiltration of macrophages in IDD and the possible interaction between infiltrated macrophages and nucleus pulposus cells (NPCs).

View Article and Find Full Text PDF

Objectives: The incidence rate of intervertebral disc degeneration (IVDD) is increasing year by year, which brings great harm to our health. The change of biomechanical factors is an important reason for IVDD. Therefore, more and more studies use finite element (FE) models to analyze the biomechanics of spine.

View Article and Find Full Text PDF

Background: Resistin may connect obesity and intervertebral disc (IVD) degeneration (IDD) and is linked with chronic inflammation. Furthermore, human IDD is characterized by high expression of interleukin-20 (IL-20). The response of human nucleus pulposus (NP) cells to tensile forces depends on both the duration and magnitude of the force applied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!