The design and synthesis of a supramolecular square was achieved by coordination-driven assembly of redox-active nickel(ii) salen linkers and (ethylenediamine)palladium(ii) nodes. The tetrameric geometry of the supramolecular structure was confirmed via MS, NMR, and electrochemical experiments. While oxidation of the monomeric metalloligand Schiff-base affords a Ni(iii) species, oxidation of the coordination-driven assembly results in ligand radical formation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cc02320hDOI Listing

Publication Analysis

Top Keywords

coordination-driven assembly
12
supramolecular square
8
assembly supramolecular
4
square oxidation
4
oxidation tetra-ligand
4
tetra-ligand radical
4
radical species
4
species design
4
design synthesis
4
synthesis supramolecular
4

Similar Publications

In-Situ Growth of Metallocluster Inside Heterometal-Organic Cage to Switch Electron Transfer for Targeted CO Photoreduction.

Angew Chem Int Ed Engl

December 2024

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China.

Construction of metal-organic cages (MOCs) with internal modifications is a promising avenue to build enzyme-like cavities and unlocking the mystery of highly catalytic activity and selectivity of enzymes. However, current interests are mainly focused on single-metal-node cages, little achievement has been expended to metallocluster-based architectures, and the in situ endogenous generation of metal clusters. Herein, based on the hard-soft-acids-bases (HSAB), the metallocluster-based heterometallic MOC (CuVMOP) constructed of [CuOPz] and [VO(OCH)(SO)(CO)] clusters was obtained by one-pot method.

View Article and Find Full Text PDF

This paper describes the use of the layered conductive metal-organic framework (MOF) (nickel)-(hexahydroxytriphenylene) [Ni(HHTP)] as a model system for understanding the process of self-assembly within this class of materials. We confirm and quantify experimentally the role of the oxidant in the synthetic process. Monitoring the deposition of Ni(HHTP) with infrared spectroscopy revealed that MOF formation is characterized by an initial induction period, followed by linear growth with respect to time.

View Article and Find Full Text PDF

Construction of Luminescent Terpyridine-Based Metallo-Bowties with Alkyl Chain-Bridged Dimerized Building Blocks.

Chemistry

November 2024

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.

Numerous metallo-supramolecules with well-defined sizes and shapes have been successfully constructed via the strong coordination interaction between terpyridine (TPY) moieties and ruthenium cations. However, the pseudo-octahedral geometry of unit hampers the luminescent properties of such metallo-architectures, thus limiting their applications as optical materials. To address this issue, we herein use a flexible alkyl chain to bridge TPY building blocks, replacing conventional linkage.

View Article and Find Full Text PDF

Herein, we report the reaction between four 1,2-dibromoxylenes and two tetra-3-pyridylporphyrins for the formation of a cofacial porphyrin core spanned by dipyridinium xylene moieties. The metal-free organic nanocage (oNC) was synthesized in one twenty-four h step at a gram-scale with a 91.5% yield.

View Article and Find Full Text PDF

Pathway-directed recyclable chirality inversion of coordinated supramolecular polymers.

Nat Commun

November 2024

School of Chemical Science and Engineering, Advanced Research Institute, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China.

It remains challenging to elucidate the fundamental mechanisms behind the dynamic chirality inversion of supramolecular assemblies with pathway complexity. Herein, metal coordination driven assembly systems based on pyridyl-conjugated cholesterol (PVPCC) and metal ions (Ag or Al) are established to demonstrate pathway-directed, recyclable chirality inversion and assembly polymorphism. In the Ag(I)/PVPCC system, a competitive pathway leads Ag-Complex to form either kinetically controlled supramolecular polymer (Ag-SP I) or thermodynamically favored Ag-SP II, accompanied by reversible chiroptical inversion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!