Macroautophagy/autophagy plays important roles in health and disease, but mechanisms of its activation are unclear. Recently we established IPMK (inositol polyphosphate multikinase) as a physiological determinant of autophagy independent of its catalytic activity. Two signaling axes, IPMK-AMPK-SIRT1 and IPMK-AMPK-ULK1, appear to mediate the influence of IPMK on autophagy. IPMK enhances autophagy-related transcription by stimulating AMPK-dependent SIRT1 activation, which mediates the deacetylation of histone 4 lysine 16. Furthermore, direct binding of IPMK to ULK and AMPK forms a ternary complex that facilitates AMPK-dependent ULK phosphorylation. Deletion of virtually abolishes lipophagy, promotes liver damage and impairs hepatocyte regeneration. Our study establishes the importance of IPMK in regulation of autophagy and as a drug target for autophagy-related diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613895 | PMC |
http://dx.doi.org/10.1080/15548627.2019.1615305 | DOI Listing |
Nucleic Acids Res
January 2025
Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
Serum response factor (SRF) is a master transcription factor that regulates immediate early genes and cytoskeletal remodeling genes. Despite its importance, the mechanisms through which SRF stably associates with its cognate promoter remain unknown. Our biochemical and protein-induced fluorescence enhancement analyses showed that the binding of SRF to serum response element was significantly increased by inositol polyphosphate multikinase (IPMK), an SRF cofactor.
View Article and Find Full Text PDFImmunity
December 2024
Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address:
Cell Commun Signal
October 2024
Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Youseong-Gu, Daejeon, 34141, Republic of Korea.
Background: Phospholipase C gamma 1 (PLCγ1) is an important mediator of the T cell receptor (TCR) and growth factor signaling. PLCγ1 is activated by Src family kinases (SFKs) and produces inositol 1,4,5-triphosphate (InsP) from phosphatidylinositol 4,5-bisphosphate (PIP). Inositol polyphosphate multikinase (IPMK) is a pleiotropic enzyme with broad substrate specificity and non-catalytic activities that mediate various functional protein-protein interactions.
View Article and Find Full Text PDFHDACs (histone deacetylase) play a crucial role in regulating gene expression, and the inhibition of these enzymes is gaining attention as a promising therapeutic approach for cancer treatment. Despite their significant physiological and clinical importance, the mechanisms of HDAC activation remain poorly understood. This study reveals that inositol polyphosphate multikinase (IPMK) is essential for activating HDAC1 and HDAC3 in cell lines and mice.
View Article and Find Full Text PDFExp Dermatol
June 2024
Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark.
Squamous cell carcinoma (SCC) is a common skin cancer, often caused by exposure to ultraviolet radiation (UVR). Recent studies have shown that changes in DNA methylation play a crucial role in the development of cancers. However, methylation patterns of SCC are not well characterised.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!