Trendy advances in electric cars and wearable electronics triggered growing awareness in device lethality/survivability from accidents. A divergent design in protection calls for high stress resistance, large ductility, as well as efficient energy dissipation, all from the device itself, while keeping the weight-specific device performance to its premium. Unfortunately, the polymer electrolyte or the ductile elastomer lacks a mechanistic design to resist puncture or tear at a high stress level. Here, we designed molecular complexes along phase boundaries to mitigate the damages by placing these mechanically strong complexes along the phase boundaries or between two immiscible polymers. This puncture-resistant gel, dubbed as gel-nacre, is able to survive a few challenging incidents, including a 400 MPa puncture from a sharp nail, a 1 cm steel ball traveling at 540 km/h, and attempted rupture on stitched samples.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b02328DOI Listing

Publication Analysis

Top Keywords

complexes phase
12
phase boundaries
12
molecular complexes
8
high stress
8
puncture-resistant hydrogel
4
hydrogel placing
4
placing molecular
4
boundaries trendy
4
trendy advances
4
advances electric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!