Objectives: To develop an exposure and risk assessment model to estimate listeriosis infection risks for Peruvian women.
Methods: A simulation model was developed utilising Listeria monocytogenes concentrations on kitchen and latrine surfaces in Peruvian homes, hand trace data from Peruvian women and behavioural data from literature. Scenarios involving varying proportions of uncontaminated, or 'clean', surfaces and non-porous surfaces were simulated. Infection risks were estimated for 4, 6 and 8 h of behaviours and interactions with surfaces.
Results: Although infection risks were estimated across scenarios for various time points (e.g. 4, 6, 8 h), overall mean estimated infection risks for all scenarios were ≥ 0.31. Infection risks increased as the proportions of clean surfaces decreased. Hand-to-general surface contacts accounted for the most cumulative change in L. monocytogenes concentration on hands.
Conclusions: In addition to gaining insights on how human behaviours affect exposure and infection risk, this model addressed uncertainties regarding the influence of household surface contamination levels. Understanding the influence of surface contamination in preventing pathogen transmission in households could help to develop intervention strategies to reduce L. monocytogenes infection and associated health risks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tmi.13246 | DOI Listing |
J Infect Dis
January 2025
Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland 21218, USA.
Clinical trials that employ human challenge, also known as controlled human infection models (CHIM), have rapidly advanced vaccine development for multiple pathogens, including at least 30 disease models to date. CHIM studies, championed by networks of researchers, regulators, ethicists, technical experts, and other stakeholders, limit exposure of individuals to an investigational product, de-risk product investments, identify correlates of protection, and most importantly provide a prompt readout of vaccine efficacy. While CHIM studies provide multiple advantages, important challenges exist, including strengthening the relevance and comparability of CHIM study results to efficacy trials in endemic areas, particularly in resource-limited settings.
View Article and Find Full Text PDFSurg Innov
January 2025
Morristown Medical Center, Department of Surgery, Morristown, NJ, USA.
Background: In difficult colorectal cases, surgeons may opt for a hand-assisted laparoscopic (HALS) colectomy or attempt a laparoscopic surgery that may require an unplanned conversion to open (LCOS). We aimed to compare the clinical outcomes of these 2 types of surgeries.
Methods: Colectomies for acute diverticulitis with a HALS or LCOS surgery were selected from the American College of Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP) 2022 Targeted Colectomy Database.
Clin Infect Dis
January 2025
GSK, Wavre, Belgium.
Background: In this phase 3 trial of an investigational maternal respiratory syncytial virus prefusion F protein-based vaccine (RSVPreF3-Mat), a higher rate of preterm birth was observed in the vaccine (6.8%) versus the placebo group (4.9%).
View Article and Find Full Text PDFN Engl J Med
January 2025
From Médecins Sans Frontières (L.G., F.V.), Sorbonne Université, INSERM Unité 1135, Centre d'Immunologie et des Maladies Infectieuses (L.G.), Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (L.G.), and Epicentre (M.G., E. Baudin), Paris, and Translational Research on HIV and Endemic and Emerging Infectious Diseases, Montpellier Université de Montpellier, Montpellier, Institut de Recherche pour le Développement, Montpellier, INSERM, Montpellier (M.B.) - all in France; Interactive Development and Research, Singapore (U.K.); McGill University, Epidemiology, Biostatistics, and Occupational Health, Montreal (U.K.); UCSF Center for Tuberculosis (G.E.V., P.N., P.P.J.P.) and the Division of HIV, Infectious Diseases, and Global Medicine (G.E.V.), University of California at San Francisco, San Francisco; the National Scientific Center of Phthisiopulmonology (A.A., E. Berikova) and the Center of Phthisiopulmonology of Almaty Health Department (A.K.), Almaty, and the City Center of Phthisiopulmonology, Astana (Z.D.) - all in Kazakhstan; Médecins Sans Frontières (C.B., I.M.), the Medical Research Council Clinical Trials Unit at University College London (I.M.), and St. George's University of London Institute for Infection and Immunity (S.W.) - all in London; MedStar Health Research Institute, Washington, DC (M.C.); Médecins Sans Frontières, Mumbai (V. Chavan), the Indian Council of Medical Research Headquarters-New Delhi, New Delhi (S. Panda), and the Indian Council of Medical Research-National AIDS Research Institute, Pune (S. Patil) - all in India; the Centre for Infectious Disease Epidemiology and Research (V. Cox) and the Department of Medicine (H. McIlleron), University of Cape Town, and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (S.W.) - both in Cape Town, South Africa; the Institute of Tropical Medicine, Antwerp, Belgium (B. C. J.); Médecins Sans Frontières, Geneva (G.F., N.L.); Médecins Sans Frontières, Yerevan, Armenia (O.K.); the National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia (N.K.); Partners In Health (M.K.) and Jhpiego Lesotho (L.O.) - both in Maseru; Socios En Salud Sucursal Peru (L.L., S.M.-T., J.R., E.S.-G., D.E.V.-V.), Hospital Nacional Sergio E. Bernales, Centro de Investigacion en Enfermedades Neumologicas (E.S.-G.), Hospital Nacional Dos de Mayo (E.T.), Universidad Nacional Mayor de San Marcos (E.T.), and Hospital Nacional Hipólito Unanue (D.E.V.-V.) - all in Lima; Global Health and Social Medicine, Harvard Medical School (L.L., K.J.S., M.L.R., C.D.M.), Partners In Health (L.L., K.J.S., M.L.R., C.D.M.), the Division of Global Health Equity, Brigham and Women's Hospital (K.J.S., M.L.R., C.D.M.), the Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, (L.T.), and Harvard T.H. Chan School of Public Health (L.T.) - all in Boston; and the Indus Hospital and Health Network, Karachi, Pakistan (H. Mushtaque, N.S.).
Background: For decades, poor treatment options and low-quality evidence plagued care for patients with rifampin-resistant tuberculosis. The advent of new drugs to treat tuberculosis and enhanced funding now permit randomized, controlled trials of shortened-duration, all-oral treatments for rifampin-resistant tuberculosis.
Methods: We conducted a phase 3, multinational, open-label, randomized, controlled noninferiority trial to compare standard therapy for treatment of fluoroquinolone-susceptible, rifampin-resistant tuberculosis with five 9-month oral regimens that included various combinations of bedaquiline (B), delamanid (D), linezolid (L), levofloxacin (Lfx) or moxifloxacin (M), clofazimine (C), and pyrazinamide (Z).
Am J Respir Cell Mol Biol
January 2025
The University of Texas Medical Branch at Galveston, Microbiology and Immuology, Galveston, Texas, United States.
Exposure to influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) is well-known to increase the risk of pneumonia in humans. Type I interferon (IFN-I) is a hallmark response to acute viral infections, and alveolar macrophages (AMs) constitute the first line of airway defense against opportunistic bacteria. Our study reveals that virus-induced IFN-I receptor (IFNAR1) signaling directly impairs AM-dependent antibacterial protection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!