A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CAGI experiments: Modeling sequence variant impact on gene splicing using predictions from computational tools. | LitMetric

CAGI experiments: Modeling sequence variant impact on gene splicing using predictions from computational tools.

Hum Mutat

Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.

Published: September 2019

Improving predictions of phenotypic consequences for genomic variants is part of ongoing efforts in the scientific community to gain meaningful insights into genomic function. Within the framework of the critical assessment of genome interpretation experiments, we participated in the Vex-seq challenge, which required predicting the change in the percent spliced in measure (ΔΨ) for 58 exons caused by more than 1,000 genomic variants. Experimentally determined through the Vex-seq assay, the Ψ quantifies the fraction of reads that include an exon of interest. Predicting the change in Ψ associated with specific genomic variants implies determining the sequence changes relevant for splicing regulators, such as splicing enhancers and silencers. Here we took advantage of two computational tools, SplicePort and SPANR, that incorporate relevant sequence features in their models of splice sites and exon-inclusion level, respectively. Specifically, we used the SplicePort and SPANR outputs to build mathematical models of the experimental data obtained for the variants in the training set, which we then used to predict the ΔΨ associated with the mutations in the test set. We show that the sequence changes captured by these computational tools provide a reasonable foundation for modeling the impact on splicing associated with genomic variants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744343PMC
http://dx.doi.org/10.1002/humu.23782DOI Listing

Publication Analysis

Top Keywords

genomic variants
16
computational tools
12
predicting change
8
sequence changes
8
spliceport spanr
8
genomic
5
variants
5
cagi experiments
4
experiments modeling
4
sequence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!