Previous investigations have found that MARVEL domain-containing 1 (MARVELD1) could inhibit tumor cell proliferation and enhance the sensitivity to chemotherapeutic drugs in hepatocellular carcinoma. Hence, it may be a valuable therapeutic target. In the study, we analyzed the responsive changes of MARVELD1 to 25 stress factors and expression of MARVELD1 in epithelial tumors of the reproductive system. We found that MARVELD1 was transferred to the cytoplasm and mitochondria under cell stress. And under cellular stress, the reactive oxygen species (ROS) levels decreased in MARVELD1 expressed cells while increased in the cells of MARVELD1-specific siRNA treatment. Meanwhile, MARVELD1 overexpression significantly promoted the inhibition of tumor cell proliferation under cellular stress via affecting ROS metabolism, not cell cycle. In xenograft tumor tissues with MARVELD1 expression, the tumor growth was inhibited and accompanied by the lower ROS levels. Furthermore, we identified that MARVELD1 could interact with catalase (CAT) to enhance latter activity and maintain stability. And the enhanced sensitivity to chemotherapeutic drugs clearly depended on the ability of MARVELD1 scavenge the ROS in carcinoma cells of the reproductive system. Our findings clearly explain that MARVELD1 may regulate tumor cell proliferation and sensitivity to chemotherapeutic drugs via reducing the exorbitant ROS. The mechanism was that MARVELD1 interacted with CAT to maintain latter stability, and then ensure continuous ROS scavenge.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.23024DOI Listing

Publication Analysis

Top Keywords

sensitivity chemotherapeutic
16
chemotherapeutic drugs
16
marveld1
12
reproductive system
12
tumor cell
12
cell proliferation
12
reactive oxygen
8
oxygen species
8
epithelial tumors
8
tumors reproductive
8

Similar Publications

Acquired resistance to chemotherapeutic drugs is the primary cause of treatment failure in the clinic. While multiple factors contribute to this resistance, increased expression of ABC transporters-such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance proteins-play significant roles in the development of resistance to various chemotherapeutics. We found that Erastin, a ferroptosis inducer, was significantly cytotoxic to NCI/ADR-RES, a P-gp-expressing human ovarian cancer cell line.

View Article and Find Full Text PDF

Multiomic machine learning on lactylation for molecular typing and prognosis of lung adenocarcinoma.

Sci Rep

January 2025

Department of Respiratory Diseases, Qilu Hospital of Shandong University, No. 107, Culture West Road, Jinan, Shandong, China.

To integrate machine learning and multiomic data on lactylation-related genes (LRGs) for molecular typing and prognosis prediction in lung adenocarcinoma (LUAD). LRG mRNA and long non-coding RNA transcriptomes, epigenetic methylation data, and somatic mutation data from The Cancer Genome Atlas LUAD cohort were analyzed to identify lactylation cancer subtypes (CSs) using 10 multiomics ensemble clustering techniques. The findings were then validated using the GSE31210 and GSE13213 LUAD cohorts.

View Article and Find Full Text PDF

Metabolic dependency mapping identifies Peroxiredoxin 1 as a driver of resistance to ATM inhibition.

Redox Biol

January 2025

Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA. Electronic address:

Metabolic pathways fuel tumor progression and resistance to stress conditions including chemotherapeutic drugs, such as DNA damage response (DDR) inhibitors. Yet, significant gaps persist in how metabolic pathways confer resistance to DDR inhibition in cancer cells. Here, we employed a metabolism-focused CRISPR knockout screen and identified genetic vulnerabilities to DDR inhibitors.

View Article and Find Full Text PDF

Natural Killer Cell-Secreted IFN-γ and TNF-α Mediated Differentiation in Lung Stem-like Tumors, Leading to the Susceptibility of the Tumors to Chemotherapeutic Drugs.

Cells

January 2025

Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA.

We demonstrate that natural killer (NK) cells induce a higher cytotoxicity against lung cancer stem-like cells (hA549) compared to differentiated lung cancer cell lines (H292). The supernatants from split-anergized NK cells (IL-2 and anti-CD16 mAb-treated NK cells) induced differentiation in hA549. Differentiated lung cancer cell line (H292) and NK cells differentiated hA549 expressed reduced NK cell-mediated cytotoxicity but expressed higher sensitivity to chemotherapeutic drugs.

View Article and Find Full Text PDF

Integrated single-cell and bulk transcriptome analysis of R-loop score-based signature with regard to immune microenvironment, lipid metabolism and prognosis in HCC.

Front Immunol

January 2025

National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.

Background: Hepatocellular carcinoma (HCC) is one of the most prevalent causes of cancer-related morbidity and mortality worldwide. Late-stage detection and the complex molecular mechanisms driving tumor progression contribute significantly to its poor prognosis. Dysregulated R-loops, three-stranded nucleic acid structures associated with genome instability, play a key role in the malignant characteristics of various tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!