Thyroid disruption properties of three indoor dust chemicals tested in Silurana tropicalis tadpoles.

J Appl Toxicol

Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.

Published: September 2019

AI Article Synopsis

Article Abstract

Indoor dust contains a multitude of industrial chemicals, and ingestion of dust is considered an important exposure route to organic contaminants. Some of these contaminants have been shown to interfere with the thyroid system, which may result in significant consequences on public health. The amphibian metamorphosis is a thyroid hormone-dependent process, which can be used as an in vivo model for studies on thyroid hormone-disrupting potency. Three contaminants of indoor dust were tested on metamorphosing Silurana (Xenopus) tropicalis tadpoles. The tested chemicals were Tris (1,3-dichloroisopropyl) phosphate (TDCiPP), tetrabromobisphenol-A (TBBPA) and propylparaben (PrP). Measurements reflecting general growth, development progress and thyroid epithelial cell height were performed on the exposed tadpoles as well as chemical analyses of the exposure water. It was shown that TDCiPP acts as a thyroid hormone-disrupting chemical in metamorphosing tadpoles by causing increased epithelial cell height in thyroid glands after exposure to a nominal concentration of 0.010 mg/L and in higher concentrations. TBBPA caused reductions in general growth of tadpoles at the nominal concentration 0.125 mg/L, and PrP caused acute toxicity at the nominal concentration 12.5 mg/L. However, no evident indications of specific thyroid-disrupting effects caused by TBBPA or PrP were observed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.3810DOI Listing

Publication Analysis

Top Keywords

indoor dust
12
nominal concentration
12
tropicalis tadpoles
8
thyroid hormone-disrupting
8
general growth
8
epithelial cell
8
cell height
8
thyroid
7
tadpoles
5
thyroid disruption
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!