Nitrate excess is common in greenhouse soils, imposing environmental risks and degrading vegetable quality. In this study, the effectiveness of adding sucrose as available carbon through irrigation to cut nitrate excess in lettuce-planted soil was investigated under impacts of soil texture and irrigation type. In the pot experiment using two loam soils of same origin with different clay to sand ratios (50.2% and 39.8%) and nitrate excess (116.1 and 417.7 mg/kg N), three-time sucrose addition through flood irrigation was more effective in lowering net formation of nitrate-based inorganic N and increasing lettuce yield in the soil with the higher clay to sand ratio, and sucrose addition at 150-450 mg/kg reduced nitrate accumulation and leaching, and nitrate content of lettuce at harvest by 62.5-89.6%, 19.3-36.1%, and 11.4-76.0%, respectively. In the micro-plot field experiment with two-time sucrose addition at 0.6-1.2 g/L through furrow irrigation (42 mm) into two other soils of same origin with different clay to sand ratios (56.9%, 48.4%), nitrate accumulation at 0-30-cm depth at the prone-leaching furrow location at harvest decreased by 30.9-36.0% under the higher clay to sand ratio but increased by about 35% under the lower clay to sand ratio. The nitrate content and yield of ridge-planted lettuce was less affected in either soil. Hence, carbon addition rate, irrigation type, and clay to sand ratio all affected the effect of available carbon addition on nitrate accumulation in vegetable-planted soil, and their joint impacts need better quantification for cutting nitrate excess in soil and improving vegetable quality and even yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-05125-x | DOI Listing |
Sci Rep
January 2025
Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.
View Article and Find Full Text PDFSensors (Basel)
January 2025
United States Department of Agriculture-Agriculture Research Service, Grassland Soil and Water Research Laboratory, Temple, TX 76502, USA.
Efficient and reliable corn ( L.) yield prediction is important for varietal selection by plant breeders and management decision-making by growers. Unlike prior studies that focus mainly on county-level or controlled laboratory-scale areas, this study targets a production-scale area, better representing real-world agricultural conditions and offering more practical relevance for farmers.
View Article and Find Full Text PDFJ Environ Radioact
January 2025
Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7070, 750 07, Uppsala, Sweden.
In this study, the long-term transfer of Cs from soil to grass on Swedish farms and fields, heavily contaminated after the 1986 radioactive fallout, was investigated. The study spans over 8-14 years, beginning in June 1986, and covers various soil types and agricultural practices. The transfer of Cs from soil to grass was highly variable, with transfer factors ranging from 1.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Geotechnologies in Soil Sciences Research Group - GeoCiS, Department of Soil Science, Luiz de Queiroz College of Agriculture - Esalq, University of São Paulo - USP, Piracicaba, São Paulo, Brazil. Electronic address:
Analyzing soil in large and remote areas such as the Amazon River Basin (ARB) is unviable when it is entirely performed by wet labs using traditional methods due to the scarcity of labs and the significant workforce requirements, increasing costs, time, and waste. Remote sensing, combined with cloud computing, enhances soil analysis by modeling soil from spectral data and overcoming the limitations of traditional methods. We verified the potential of soil spectroscopy in conjunction with cloud-based computing to predict soil organic carbon (SOC) and particle size (sand, silt, and clay) content from the Amazon region.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.
Nitrification, the oxidation of ammonium to nitrate via nitrite, links nitrogen fixation and nitrogen loss processes, playing key roles in coastal nitrogen cycle. However, few studies have simultaneously examined both ammonia-oxidizing and nitrite-oxidizing microbes. This work investigated the abundance and community structure of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB) using archaeal amoA gene, bacterial amoA gene, and NOB nxrB gene, respectively, through q-PCR and Sanger sequencing along the Changjiang Estuary salinity gradient.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!