A core of bottom sediments from Lake Krugloe located within the 30 km influence zone of the Siberian Chemical Plant (located in the city of Seversk "Tomsk-7") was studied to determine scales and rates of migration of artificial radionuclides Cs and Am in organomineral sediment. It was found that the main portion of Cs and Am was contained in the sediment interval above 10 cm. This means that the horizon of 10 cm corresponds to 1950-the time of the start of widespread tests of nuclear weapons. The Pb dates also confirm that this particular horizon was formed in the 1950s. Pore waters in the core above the 10 cm horizon are in oxidizing conditions. The depth of the oxidized/reduced boundary was determined from the distribution of redox-sensitive elements Fe and U dissolved in the pore solution. The core distribution of Cs is a slightly sloping step, with the lower edge at the 10 cm level. The smearing of the lower boundary of this distribution showing the scale of Cs migration made it possible to estimate the diffusion mobility of Cs. Its diffusion coefficient turned out to be of the order of 10 cm s. As shown by measurements, the scale of migration of Am and the scale of migration of Cs have similar values. Theoretical analysis carried out in this work shows that the most probable mechanism of Cs and Am migration in the pore solution of lake sediment is the migration of colloidal particles to which these radionuclides are strongly bound. Calculation of the diameter of such particles by the Stokes-Einstein formula shows that they have submicron dimensions (d ≈ 400 nm). No evidence was found that the change in redox conditions in the sediment had an effect on migration of Am ions in pore solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-04726-w | DOI Listing |
Polymers (Basel)
January 2025
Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar.
The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China.
This article systematically investigated the improvement effect of polypropylene fiber (PPF) on the mechanical and freeze-thaw properties of alkali-activated fly ash slag concrete (AAFSC) with high fly ash content and cured at room temperature. Fly ash and slag were used as precursors, with fly ash accounting for 80% of the total mass. A mixed solution of sodium hydroxide and sodium silicate was used as alkali activator, and short-cut PPF was added to improve the performance of AAFSC.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China.
The development of carbon-based supercapacitors is pivotal for advancing high energy and power density applications. This review provides a comprehensive analysis of structural regulation and performance enhancement strategies in carbon-based supercapacitors, focusing on electrode material engineering. Key areas explored include pore structure optimization, heteroatom doping, intrinsic defect engineering, and surface/interface modifications.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Engineering Research Centre of Diagnosis Technology of Hydro-Construction, Chongqing Jiaotong University, Chongqing 400074, China.
Alkali-silica reaction (ASR) is an important factor that seriously affects the durability of reinforced concrete (RC) structures. The current research on alkali-aggregate mainly focuses on the deterioration mechanism of materials and the mechanical properties of standard specimens. However, there is a gap in the field of research on the effect of alkali-aggregate damage on the level of RC structures.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Faculty for the Built Environment, University of Malta, MSD 2080 Msida, Malta.
This paper highlights the optimisation of a key design parameter essential to the development of PMUTs, which are part of the transmitting components of microsensors. These microsensors are designed for use in the Structural Health Monitoring of reinforced concrete structures. Enhancing the effectiveness of the transmitting component allows for greater spacing between microsensors, which in turn reduces the number of devices needed to implement a full structural health monitoring system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!