The Authors regret forgetting in the original version of this article to mention that this work was also supported by the US National Institute of Health (NIH) (1OT2OD024899-01).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-019-03040-8DOI Listing

Publication Analysis

Top Keywords

correction piezo
4
piezo proteins
4
proteins incidence
4
incidence abundance
4
abundance enteric
4
enteric nervous
4
nervous system
4
system link
4
link mechanosensitivity?
4
mechanosensitivity? authors
4

Similar Publications

Thermal deformation compensation scheme to the sub-nanometre level of a piezoelectric offset mirror for MHz repetition rate free-electron laser.

J Synchrotron Radiat

January 2025

Dalian Coherent Light Source and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China.

Free-electron laser (FEL) facilities operating at MHz repetition rates can emit lasers with average powers reaching hundreds of watts. Partial absorption of this power induces thermal deformation of a few micrometres on the mirror surface. Such deformation degrades the characteristics of the reflected photon beam, leading to focal spot aberrations and wavefront distortions that fail to meet experimental requirements.

View Article and Find Full Text PDF

We provide a technical description and experimental results of the practical development and offline testing of an innovative, closed-loop, adaptive mirror system capable of making rapid, precise and ultra-stable changes in the size and shape of reflected X-ray beams generated at synchrotron light and free-electron laser facilities. The optical surface of a piezoelectric bimorph deformable mirror is continuously monitored at 20 kHz by an array of interferometric sensors. This matrix of height data is autonomously converted into voltage commands that are sent at 1 Hz to the piezo actuators to modify the shape of the mirror optical surface.

View Article and Find Full Text PDF

The present paper discusses the scientific and technical problem of optimizing the design and characteristics of a new type of solid-state sensors for motion parameters on bulk acoustic waves in order to increase the signal-to-noise ratio and the detectability of an informative signal against the background of its own noise and interference. Criteria for choosing materials for structural elements, including piezoelectric transducers of the sensitive element, were identified; a corresponding numerical simulation was performed using the developed program; and experimental studies according to the suggested method were carried out to validate the obtained analytical and calculated positions. The experimental results revealed the correctness of the chosen criteria for the optimization of design parameters and characteristics, demonstrated the high correlation between the results of modeling and field studies, and, thus, confirmed the prospects of using this new type of solid-state acoustic sensors of motion parameters in the navigation and control systems of highly dynamic objects.

View Article and Find Full Text PDF

Bone block from lateral window - correcting vertical and horizontal bone deficiency in maxilla posterior site: A case report.

World J Clin Cases

April 2024

State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei Province, China.

Background: Lateral window approach for sinus floor lift is commonly used for vertical bone augmentation in cases when the residual bone height is less than 5 mm. However, managing cases becomes more challenging when a maxillary sinus pseudocyst is present or when there is insufficient bone width. In this case, we utilized the bone window prepared during the lateral window sinus lift as a shell for horizontal bone augmentation.

View Article and Find Full Text PDF

We demonstrate a free-space, trolley-mounted potential vision tester (PVT), designed to study and improve the accuracy of visual acuity (VA) measurements in the aging eye. Key features include a high-resolution visual display presented in Maxwellian view, a 3 mm pupil to limit wavefront (WF) aberrations, and a moderate cost deformable mirror to induce or correct higher order optical aberrations. The visual display supported accurate measurement of visual acuities down to 20/5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!