A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiplexed, Sequential Secretion Analysis of the Same Single Cells Reveals Distinct Effector Response Dynamics Dependent on the Initial Basal State. | LitMetric

The effector response of immune cells dictated by an array of secreted proteins is a highly dynamic process, requiring sequential measurement of all relevant proteins from single cells. Herein, a microchip-based, 10-plexed, sequential secretion assay on the same single cells and at the scale of ≈5000 single cells measured simultaneously over 4 time points are shown. It is applied to investigating the time course of single human macrophage response to toll-like receptor 4 (TLR4) ligand lipopolysaccharide (LPS) and reveals four distinct activation modes for different proteins in single cells. Protein secretion dynamics classifies the cells into two major activation states dependent on the basal state of each cell. Single-cell RNA sequencing performed on the same samples at the matched time points further demonstrates the existence of two major activation states at the transcriptional level, which are enriched for translation versus inflammatory programs, respectively. These results show a cell-intrinsic heterogeneous response in a phenotypically homogeneous cell population. This work demonstrates the longitudinal tracking of protein secretion signature in thousands of single cells at multiple time points, providing dynamic information to better understand how individual immune cells react to pathogenic challenges over time and how they together constitute a population response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6498135PMC
http://dx.doi.org/10.1002/advs.201801361DOI Listing

Publication Analysis

Top Keywords

single cells
24
time points
12
cells
9
sequential secretion
8
reveals distinct
8
effector response
8
basal state
8
immune cells
8
proteins single
8
protein secretion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!